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Abstract

We give a new proof for the existence and
the uniqueness of k-negations. With the aid
of a generalised dyadic representation sys-
tem is possible to give an explicit expression
for k-negations and it is possible to showing
that there exists a set of measure 1 where k-
negations have derivatives with zero values.
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1 Introduction

Negation functions are very well known objects from
Set Theory and Fuzzy Logic: they are mappings n :
[0,1] — [0,1] satisfying a) n(0) = 1, n(1) =0; b) n
is not increasing. In case n satisfies ¢) n?(r) = z, we
say that n is a strong negation.

In a classic paper by Trillas [14], we can find the fol-
lowing characterization for strong negations:

Theorem 1 The function n is a strong negation if,
and only if, there exists an increasing bijection f :

[0,1] — [0,1], verifying n(x) = f~(1 - f(x)).

A particular case of great interest is that of negations
which are related with the duality of aggregation func-
tions and the idempotentity of some binary functions.
They are called k-negations and are denoted by mng.
In fact, they are strong negations satisfying this addi-
tional property (for k € ]0, 1[):

ng (kx) =k+ (1 — k) ng (x),
and they have been studied in [5], [6], and [7], among

others. The main fact is that for each k, there exists
one, and only one, ny.
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The solution for the system of functional equations

{ 1= mni)
h(E) =k + (1 — k)h(z)

with  in [0, 1], is a function which inverse satisfies the
relation of Trillas for k-negations. It has been deeply
studied as we can see in [2], [3], [4], [9], [10], [11], [12],
and [13]. We will denote it with the capital letter R.

The function R is (for k # 1/2) singular in the sense of
Measure Theory (i.e., it is a continuous and monotone
function having null derivatives on a set of measure 1).

The relation
ng(z) =R(1-R"(z))

does not yields to an explicit expression for ny (x). In
this sense Fraile et al. [5], gave a recurrence expression
on a dense and denumerable subset of [0,1] which is
generalized in [8].

The target of this paper is double: on the one hand, we
give a explicit expression for k-negations, and, on the
other hand, we show this new property for ng: it has
null derivatives on a set of measure 1 (i.e., the same
property that was true for R), and moreover, this is
the only value that the derivatives can get.

The main tools we will use to obtain these results are
a generalised dyadic system developed by the authors
in [1], and the system of functional equations charac-
terizing k-negations.

2 The existence of k-negations

Lemma 2 The system of functional equations

{ h(kx) = kh(x)
h(k+ (1 k)z) =k + (1 — k)h(z)

has one, and only one, solution in the set B (]0,1],R)
of the real bounded functions defined on the unit inter-
val; and it is the identity map.
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Proof. Clearly, the identity map satisfies the system
of equations.

For short, let us denote B ([0,1]) the Banach space
of real bounded functions defined on the unit inter-
val equipped with the sup-norm, and the functional
operator introduced by the formula

F:B([0,1]) — B([0,1]);  g— F(9),

where F'(g) acts in the following way:

ko (%) 0<y<k
F(g)(y) :== B u—k
E+(1—-kg(¥=), E<y<Ll
Hence, F' is contractive of ratio b := max{k,1 — k}.

For this, let us denote h; := F(g;) for given g; and g
in B([0,1]). Easy computations show that

ho (y) —hi(y) =k [g2 (L) —gn (¥)] if 0< y <k, and
he () = a(y) = (L= K) [g2 (455) — g0 (455) | 0k <
y <1,

implies ||he — h1|| < bllg2 — g1]l-

The contractive mapping theorem of Banach gives that
there exist one and only one fix point for F: the de-
sired uniqueness of h is just fulfilled, and the proof is
finished. m

Lemma 3 One element h in B ([0, 1]) is a k-negation
if, and only if, it satisfies the equations

{ h(kx) = k+ (1 — k)h(x) (a)
h(k+ (1 — k)z) = kh(z)

Proof. A k-negation satisfies
{ ng(kz) =k + (1 — k)ng(x)

ni(z) ==
Because ny(ng(kx)) = kx, we can write
ng (k4 (1 —k)nyg (z)) = kx; and doing ny (x) =y we
have ny(k + (1 — k)y) = kn; ' (y).
But nlzl = ny, and hence, we obtain the second of the
equations in (a) .

For the reverse implication it is enough to show that
n?(x) = x. From (a), we obtain

{ n2(kz) = nk(k + (1 — k)ng(z)) = kni ()
n2(k+ (1 —k)x) = ng(knk(z)) = k+ (1 — k)n2(z)

These equalities and the lemma above ensure that
nZ(x) = x. Moreover, one can check that ny is de-
creasing. m

140

ESTYLF 2010, Huelva, 3 a 5 de febrero de 2010

3 An explicit expression for
k-negations

3.1 Generalised dyadic number system

In this section, we refer to [1, $.3] for a wider study in
detail.

The authors introduce a new representation system
for numbers in ]0,1[ via series expansion combining
the numbers k and 1 — k (k € 10, 1[); precisely, in the
form = 3275 (1 — k)" k™. This situation is unique,
very similar to that of dyadic expansions, but a denu-
merable set of numbers for which there are exactly
two representations: one finite and the other infinite.
They are obtained from a dynamical system which is

ergodic and A-preserving measure.

Definition 4 Let k € ]0,1[. For each z € ]0,1], there
exists a mon negative integer ng such that

Erotl < g < ko,

Hence, x = k™ +yy, with 0 < yy < k™ (1 —k); and
we can write

=kt k0 (1 — k),
where x1 € [0,1]. Reasoning on x1, we obtain

x = kot ottt (] ) 4 ot (1 — k:)2 T

and, by induction, we have this formal equality:

+oo
w=Y" (1 k) R,
d=0

which will be called the generalized dyadic representa-
tion for the corresponding number x.

These series converge to x, because

)

e =Y (1 k)RR | < (1 gy

d=0

and the majorization M-test of Weierstrass is applied.
We summarize this situation:

Proposition 5 Let k € ]0,1[. If z € ]0,1], then
there exists an increasing sequence of naturals 1 <
mg < mp < < mg < ---, such that * =

O] — k) ma,

Proposition 6 The expansion in the above proposi-
tion is unique but it would be finite or stationary (i.e.,
mqg=m; ifd>j).
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Proof. Because
l=k+k(1—k)+kQ—-k>+kQ—-k)>+--,

in the finite or stationary cases double expansions ap-
pear:

n—1

zn:(l—k:)dkmd =

d=0 d=0

By the other hand, if the sequence (mg) is not bounded
(the expansion for z is not finite neither stationary),
let us consider infinite expansions for x and y:

+oo
> 1= k) ke
d=0
+oo

> (1= k) gma

d=0

where 0 < d < n — 1, implies mq = m/, and if d > n
then mgq < m/,. Hence:

n—1 “+o0

y < A=k k™ 4+ B> (1 k) =
d=0 d=n
n—1

(1= k) k™ 4 k=t (1— k)" <

Il
3
1 IM

1— +oo
< A=k)TE™+ 3 (1= k)TE™ =2,
d d=

Il
=]

As a consequence, for z with non bounded (mgy), z
differs from y being stationary or non stationary. m

3.2 A singular function with the generalised
dyadic system

Definition 7 For each k € ]0,1[\{3} let us define
the function fr : [0,1] — [0,1] given in the follow-
ing way: each x with non stationary infinite expansion

(i.e., there exist 1 < tg < t; < -+ < tg < ---, such
that)
r o= ko4 k(1 -k)™+

+E4 (1 -
+k (1 -

k;)s°+1—|—-"+k‘tl(1—k)sl+"'
k)Sd—1+1+,,.+ktd (17k)5d+...

18 mapped to

fo(@) =k +k(1—k) + - +kQ-k)" 7+
FESOT2 (1 — BTN o ko2 (1 — )R
+k81+2 (1 _ k)tl*l 4+ fes1+2 k)tQ
+k5d—1+2 (1 _ k)td—lfl_k. . .+k5d—1+2 (1 _ k)td*2+. ..

(1- k)" 4
(1_ *2_‘_...
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“+ o0
SR Em+Y (1= k) et
d=n

Iftg:=1, then k+ k(1 — k)4 -+ k(1 — k)2 does
not exist. In the stationary case, i.e., when z has finite
expansion

r = kto+...+kto(1_k)so+...
—l—k’td (1_k>5d—1+1+”.+ktd (1_k)5d7
then
fr@) © =k+k(—k) 4+ F+k(1—k)° 4+

+k3d71+2 (1 _ k,)td—l—l 4.
+k3d—1+2 (1 _ k)td*Q + k5d+1 (1 . k)tdfl .

Remark 8 If we work with x given by an infinite
number of chains in the form

ktd (1 _ k)5d71+1 4t ktd (1 _ k)sd ,
the image will be an infinite sum of chains in the form

Esa-1t2 (1 — )l g et (1 — gyt

If the number of chains is finite, the result is analo-
gous, but adding

e e O
First, we give some properties concerning fy.

Proposition 9 The function fi is a strictly decreas-
ing function.

Proof. Let us consider four different cases.

a. Let be y < x, where

r=k" 4k (1-k)"+

TR Q- RO R (1 k)T
kta (1 — k)5 ke (1 — ) 4
htart (1 — k)L o g ptass (1 — k)5 4.
+Etar (1 — k) 4.

and

y=ko4-- kO (1-k)*+

R (1= k)P R (1= k)T
k(1= k)T Rt (1 k)
R (1— k) g e (1 k)T
Fhtare (1 — )San 4o

(note that s, | < s441), thereof
fol@) =k+k(1—k)+ - +EQ -k >+
4 fsa-112 (]_ _ k)td—lfl 4+
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RS2 (] — k)tr2 4+ ka2 (1 — )t 4
ST (1 — E)Pr T2 a2 (] fyfen Tl
and

fily) = k(1= k) + -

Fh(1 =K% 4 kst (1 )T
RS2 (1 — )l gsat2 (1 — k)T
RS2 (1 — k)' T2 psant2 (1 — gyl
which yields to fx(x) < fi(y).

b. Now, let us consider z and y, y < x, in the form:

r=ko 4 4kl (1— k)% +

TE (=R k(=R

Fhta (1 — k)%t 4

kb (1 — k)% 4 Kl (1= k)%
and

y=Fko 4. kP (1-k)™+

PR — k)T R (1= k)

kb (1 — k) o Elan (1 — )% 4
St (1= k)%™ glan (1 — k)%ent! 4o

(Note here that 441 <t} ,.) Hence,

fo@) =k +k(Q—k) 44+ k(1 -k ...
+fSa—112 (1 _ k)tdfl_l 4 e Sa-1t2 (1 _ k)td—Q +
PRS2 (1 — )t o st (1= k)T
and

) =k+k(Q—k) +-+k(1 -k ..
Fhsa 2 (] — YT g psat2 (] e
RS2 (1= k)T ka2 (L k)T
which, again, implies fi(z) < fi(y).

c. x has finite expansion and y has infinite expansion,
with < y.

d. z and y have both finite expansion.

Cases c¢. and d. fulfil the rest of possibilities and the
proofs run as in a. and b. =

Proposition 10 The function fy is a continuous
function.

Proof. Let z € [0,1], and we consider the following
two cases:
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a. z has not finite expansion:

k)SO 4.
k)Sd—l"rl N ktd (1 _

r o= K4t kb(1—
L fta (1_ k)5d+...

If a sequence (z,,) converges to x, then there exists m
such that n > m implies

T, = Ko+ . +k"(1-
+k' (1 —
+k-t£i+1 (1 —

k)sO + ...

k/,)sd—1+1 4t k,td (1 _ k)sd +
k-)sd'H 44 kt;l+1 (1 _
i.e., x, and x coincide on the first d blocks if n > m.

Then f(z) and f(z,) have expansions that coincide in
the form

k+k(1—k) 4+ k(1 -k 4.

FhPa T2 (1 = )l T psa k2 (1 )l

+k5d+2 (1 o k)tdfl NI

which implies that

\fi (@) = fi (2)] < k) 4 (1 -

2kt (1 — k)t

9hsa+? [(1 _

But, if n — 400 then, d,t; and s; — 400. Hence,
fe (xn) — fi (z).

b. If z has finite expansion, then we will consider
sequences (x,) one side converging to x. Firstly, let
T, \, . Because

r = k;to—l--'--l—kt”(l—k:)so-l---'
—|—]{1td (1 _ k)8471+1 4t Lla (1 _ k)Sd ,
then
By = KOk (1 — k)0 k(1 — )* g

4 ktd (1 _ k)sd + ktiﬂrl (1 — k)sd+1 + ...

(where t};, ; =t ;(n) for all j’s and ¢, ; — +o0 if n
does). Applying fi on them:

fr@) =k+kQ—k) +- -+ k(1 —k)° 4.
St (1 — )T g a2 (1 — )T
htatl (1= k)

and

fel@n) =k+k(1—E)+ - +k(1 -k 4+
Rt (1 — k)T oy a2 (1 - )T
RS2 (1 )T g g st (1 - k)tim—? +e

But7 if tld—‘—] - +OO7 then ksd+2 (1 — k)td_l 4+ -+

Esat2 (1 _ k)tfﬂ—l*z 4o fesa+1 (1 _ k)td*l; ie.,
fk (‘rn) — fk ({,C)
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By the other hand, if z,, /" x, things run analogously.

Both cases a. and b. together give the desiderable
convergence fi (z,) — fi (z),if n — 4+00. m

The next lemma will be useful in that follows.

Lemma 11 ([I, Th.13]) The set of points x =

+oo n pmy, . 3 My . _k -
neq (L=Fk)" k™~ for which lim,, ™= = %+ is a set

of \-measure 1.

Definition 12 A point x is said normal in the basis k
(or k-normal) if it verifies the property in the lemma
above.

Theorem 13 There exists a set of measure 1 where
the function fi, has null derivatives on each point.

Proof. Let us consider x a normal number in this rep-

resentation system. It will necessarily have an infinite

expansion:

r o= k4. k(1 -
+k (1 -

k)SO + ...
k)Sd71+l+"'+ktd(171€)Sd+"‘;
and we define sequences (z,,) and (y,):

k(1 —k)T 4

k)P4 ke (1 k)%

x, = kP 4..
+k (1 -
and

yn:kt“+~'~+kt° (17k)so+”~+ktd (17111)5471%*1+

k)8d+1

+kta (1 —k)°* + ke (1 —

)

verifying z, < z <y, for all n € N. The function f
acts respectively as follows on them:

+ksd—1+2 (1 — ]g)td—lfl IS LSd—112 (1 N k)td*Q +
+k5d+1 (1 _ k)tdfl :

and

fk(yn) =k+/€(1—k‘)++k(1_k)to—2+

4 ksd—1+2 (1 _ k.)td—l—l B (1 _ k‘)td_2 n
+ksd+2 (1 _ k)td_l )

Then, we have

Te(yn)—fe(@n) _
Yn —Tn
kP2 (1 p)ta—1 _g2at?(1_g)ta—?
ktd(l—k)sd+1
1-2k
—kSdTI(1—k)td ( k ) =% Sato(sa)

T Tktd(1—k)sd Tl

)

1-k

where we have taken into account that tg ~ ﬁsd for
normal numbers.
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Now, on the one hand, if k¥ > 1/2, then % < 0, and
Sr(yn) = fr(@n)
Yn — Tn

On the other hand, if £ < 1/2, then % > 0, and,
analogously,

lim =0.

Si(yn) — fi(@n)

Yn — Tn

lim =0.

Hence, the existence of f;(z) implies it is null.

But monotonicity of f means its derivability on a set
of measure 1 (see [11]). Hence, f.(x) =0 on a set of
measure 1.

Proposition 14 The function fi does not admit non-
zero derivatives.

Proof. Let us consider x with finite expansion:

=k 4 k(1 - k)%,
and
Tp =K 4 B (1= k) BT (1 — k)T
For each n:
fe(@n) = (@) _ -k (A-K)"™
Ty — T km (1 — k)t

k’ sqg+1—m
()

and when n — +00, this sequence goes to 0 or to —oo,

depending on the value of —£_. Hence, in case the

-k
limit existing, it must be zero.
On the other hand, if x has not finite expansion, then
let us consider sequences (2,,) and (y,,), as in the above
theorem. In addition, let

Y, = koo k(1 —k)%0 -
+ktd (1 _ k)Sd—1+1 4t td (1 _ k)sd =+
kb (1 — k)% kta (1 — k)5t

For these numbers:

fe(ya) — fulza) _ ( i k)—sd+1—td |

Yd — Xq 1-

and

feyg) = fulwa) 14k ([ Kk —sat+1—ta

In case there exists derivative, the quotient of both
limits f% must be equal to 1; but this is not the

case when k # 1/2. Hence, because the derivative
exists, it must be equal to 0. m
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Theorem 15 The functon fj is the unique solution
for the system of functional equations given by

{ fkx) =k+ (1—Fk) f(z)
fk+ (A =-k)z)=Fkf(z)

Proof. Firstly, we will show that fj verifies this sys-
tem of functional equations. Let us consider the case
when x has infinite expansion; the finite case runs anal-
ogously. If

x o= kP4 k(1 —k)® kN (1= k)T
+kf (1 —Ek)° 4 -,

then

frl@) =k4+kQ—k) +--+k(1-K)" "+

FESOT2(1— k) o kSt (1 k)T

FEST2(1— k)T k(1 k)T

For these formulae, writing kz and fi(kz), the first of
the two equation holds.

For the second equation the reasoning is that follows:
if to 7é 17 then

k4+(1—k)z=k+kio (1—k)+--+kbo (1—k)*H +
+kt (1 _k)30+2 IR a1 (1 _k)lerl I
and

fe(k+(—K)z) =k + k(1 —k)+ -
R (L= k)T kot (1 — k)T

FhSO (1 — k)T 4

and if tg = 1, then

Fe(@) = kP2 (1 — k) e ko2 (1 — k) P
and

ko3 (1 — k) ...
FEOTS (1 — k)T 4

fr(k+(1—Fk)x)

For both cases, the second of the equations is fulfilled.
]

Corollary 16 The functions ny and fi are, in fact,
the same function.

In [2], the authors show two important properties con-
cerning k-negations. Here A denotes de Lebesgue mea-
sure on the reals.

Corollary 17 The k-negation ny maps a set of A-
measure 0 on a set of \-measure 1. The initial set
In[k*(1—k)' 7]

has Hausdorff dimension equal to W[ a—R]
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Corollary 18 The k-negation ny maps a set of A-
measure 1 on a set of \-measure 0 with fractal dimen-

, In[k*(1—k)* =]
sion equal to AT
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