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Abstract

The aim of this paper is to present a new al-
gebraic approach from computer algebra to a
discretized continuous logic. It makes use of
a previous model of p-valued logic (where p is
a prime number) based on the use of Gröbner
bases of polynomial ideals. A five-valued
logic (i.e., p = 5) with some modal opera-
tors has been considered as a compromise be-
tween precision and complexity of the poly-
nomials involved. Therefore the continuous
truth values are discretized into five intervals
corresponding to the likelihood levels: impos-
sible or very unlikely / unlikely / dubious /
probably / almost sure or absolutely sure. It
is therefore posible to obtain the likelihood
level of any given logic formula. Moreover,
it is possible to perform knowledge extrac-
tion and verification of small Rule Based Ex-
pert System whose knowledge is represented
by this logic. An implementation in the com-
puter algebra system Maple is included.

Palabras Clave: Continuous Logic, Com-
puter Algebra, Gröbner Bases, Rule Based
Expert Systems.

1 INTRODUCTION

In previous research, the authors have developed a
polynomial model for knowledge extraction and consis-
tency checking in Rule Based Expert Systems (RBES).
The underlying logic of such a polynomial model is
the classical Boolean logic or finitely-valued logics with
modal operators [12, 13]. In particular, the proposed
model is based on the theory of Gröbner bases (GB)
[2, 3]. Following this approach, the authors have so

far designed and developed RBES in different fields
[9, 11, 15]. These works are summarized in Section 2.

In [14] the authors developed an algebraic approach to
minimal polynomial continuous logic (MPL) that can
be applied to perform knowledge extraction and verifi-
cation (consistency checking) of general RBES whose
underlying logic is MPL, but, unfortunately, it only
provides partial results and sufficient conditions, un-
like the Boolean and finitely-valued cases.

An implementation of any continuous logic, fuzzy logic
in particular, presents serious computational and esti-
mation difficulties. The aim of this paper is to perform
a logical effective calculations and to perform knowl-
edge extraction and consistency checking in RBES
whose underlying logic is continuous, by means of a
discretized continuous logic.

In this way, our research extends previous works by
Kapur and Narendran [8] and Hsiang [7] (classical
Boolean logic case) and Alonso et al. [1, 4] finitely-
valued logics case), where techniques for performing
effective calculations in logic using Gröbner bases are
treated.

2 PREVIOUS RESULTS

2.1 POLYNOMIAL IDEALS AND
GRÖBNER BASES

A polynomial ideal is a subset of a polynomial ring
which fulfils some specific requirements: it is also a
ring and the product of any element of the ideal by
any element of the ring lies within the ideal. The ideal
generated by the polynomials, p1,..., pm (this ideal is
mathematically denoted by 〈p1,..., pm〉) is the mini-
mum ideal containing p1,..., pm [5].

The key result in ideal theory is due to Buchberger
[2, 3, 5]. It happens that different bases may gener-
ate the same idealn and Buchberger designed a theory
and an algorithm for finding a specific basis, which he
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called “Gröbner basis” (as a tribute to his PhD advi-
sor), that characterized each polynomial ideal [2, 3, 5].
A constructive method for calculating the “normal
form” (NF) of a polynomial modulo an ideal (the
residue of the polynomial modulo the ideal) was also
included in the theory. The most relevant application
of Buchberger approach is the solution of the “ideal
membership problem”: if g is a polynomial and L is
an ideal, then

g ∈ L if and only if NF (g, L) = 0

2.2 A POLYNOMIAL MODEL FOR
FINITELY-VALUED MODAL LOGIC

Let us suppose that the logic considered is a p-valued
one (with some modal operators) and that the propo-
sitional variables are P1,..., Pw. Then the polynomial
residue class ring

Zp[p1, ..., pw]/I

where I is the ideal

I = 〈pp
i , ..., p

p
w〉

with certain operations translating the connectives of
the logic is isomorphic to the p-valued logic. Given a
propositional formula, α, we use ϕ(α) to denote the
polynomial representing α (in the Boolean case this
representation is closely related to Boole’s mathemat-
ical approach to logic). Details about this translation
in the p-valued case can be found in [13]. According to
Theorem 1 (below), the problem of checking if a propo-
sitional formula α can be inferred (formally termed
as “tautological consequence”) from others, β1,..., βm,
may be dealt by checking a polynomial ideal member-
ship:

Theorem 1: A propositional formula α is a tauto-
logical consequence of a set of formulae {β1,..., βm}, if
and only if

ϕ(¬α) ∈ 〈ϕ(¬β1), ..., ϕ(¬βm)〉

A long detailed proof of this beautiful theorem (in the
p-valued case) can be found in [13].

2.3 RULE-BASED EXPERT SYSTEMS

A Rule-Based Expert System (RBES) consists of three
basic components:

• The Knowledge Base. It is concerned with the in-
formation contained in the Expert System trying
to model the knowledge of human experts. In a

RBES, this knowledge is characterized by means
of a set of production rules which are used along
with the input of the RBES to derive the out-
put of the system. The process of developing this
knowledge base requires the choice of a represen-
tation paradigm for modeling all the information
described in natural language by human experts.
In the case of the method described in the present
paper, the suitable information is represented by
means of polynomials. Consequently, in our sys-
tem, the information related to the input (facts),
output and the knowledge base (production rules)
must be translated to polynomials. In order to
make easy this translation, we are previously re-
quired to represent first all this information in
terms of propositional logic.

• The inference engine. It is related to the tech-
nique used to make deductions automatically
(that is to say, the mechanism by means of which
the Expert System derives the output from the
given input). By means of a previous mathemat-
ical result (see Theorem 1), problems associated
to “deduction” may be translated into algebraic
problems, so that we can use a mathematical al-
gebraic software as inference engine.

• An interactive Graphic User’s Interface. Through
it, users may easily introduce the information con-
cerning the input of the Expert System and ob-
serve the resulting output the Expert System au-
tomatically infers from the former.

2.4 A POLYNOMIAL MODEL FOR
RULE-BASED EXPERT SYSTEMS

In the case of a RBES, Theorem 1 can be formulated
in the following way:

Theorem 2: A certain formula q can be inferred from
the knowledge in the RBES (described by the produc-
tion rules R1,..., Rr) and the facts {F1,..., Ff} if and
only if:

ϕ(¬q) ∈ 〈ϕ(¬R1), ..., ϕ(¬Rr), ϕ(¬F1), ..., ϕ(¬Ff )〉

In order to simplify this expression, we can define
the ideal J , generated by the production rules in the
knowledge base,

J = 〈ϕ(¬R1), ..., ϕ(¬Rr)〉

and the ideal K generated by the given facts,

K = 〈ϕ(¬F1), ..., ϕ(¬Ff )〉

By means of these two ideals, the expression above
would be transformed into:

ϕ(¬q) ∈ J + K
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and the latter membership can, again, be decided us-
ing normal forms, as it is equivalent to:

NF (¬(q), J + K) = 0

if working in Zp[p1, ..., pw]/I, or to:

NF (¬(q), I + J + K) = 0

if working in Zp[p1, ..., pw]. Knowledge extraction in
this kind of RBES can be therefore effectively cal-
culated. Moreover, (Zp[p1, ..., pw]/I)/(J + K) is in
fact isomorphic to the logic structure associated to the
RBES (see [12] for details). Consequently, consistency
checking for a given set of facts {ϕ(¬F1), ..., ϕ(¬Ff )}
is equivalent to the non-degeneracy of ideal J + K of
(Zp[p1, ..., pw]/I) into the whole ring, what is equiva-
lent to:

GB(J + K) 6= {1}

if working in Zp[p1, ..., pw]/I, or to:

GB(I + J + K) 6= {1}

if working in Zp[p1, ..., pw].

2.5 MAPLE IMPLEMENTATION

The implementation in a computer algebra system
Maple, CoCoA, etc. is surprisingly brief. For instance,
all the code corresponding to Kleene’s five-valued logic
(with some modal operators) is included afterwards.
Firstly the polynomial variables, ring, variable order-
ing and ideal iI have to be defined (I is a reserved
word in Maple, so we denote ideal I by iI):

> with(Groebner):
> with(Ore_algebra):
> SV:=x[1],x[2],x[3],x[4]:
> fu:=v->v^5-v:
> A:=poly_algebra(SV,characteristic=5):
> Orde:=MonomialOrder(A,’plex’(SV)):
> iI:=map(fu,[SV]):

and then the unary and binary connectives can be de-
fined:

> NEG :=(m::algebraic) ->
> NormalForm(4*m+4,iI,Orde):
> POS1 :=(m::algebraic) ->
> NormalForm(expand(4*m^4),iI,Orde):
> POS2 :=(m::algebraic) ->
> NormalForm(expand(3*m^4+4*m^3+4*m^2
> +4*m),iI,Orde):
> NEC2 :=(m::algebraic) ->
> NormalForm(expand(2*m^4+2*m^3+m),
> iI,Orde):
> NEC1 :=(m::algebraic) ->

> NormalForm(expand(m^4+4*m^3+m^2+
> 4*m),iI,Orde):
> ‘&OR‘:=(m::algebraic,n::algebraic) ->
> NormalForm(expand(2*m^4*n^2+
> 4*m^3*n^3+2*m^2*n^4+2*m^4*n+2*m*n^4+
> m^3*n+3*m^2*n^2+m*n^3+2*m*n+m+n),
> iI,Orde):
> ‘&AND‘ :=(m::algebraic,n::algebraic) ->
> NormalForm(expand(3*m^4*n^2+m^3*n^3+
> 3*m^2*n^4+3*m^4*n+3*m*n^4+4*m^3*n+
> 2*m^2*n^2+4*m*n^3+3*m*n),iI,Orde):
> ‘&IMP‘ :=(m::algebraic,n::algebraic) ->
> NEG(m) &OR n:

3 DISCRETIZED CONTINUOUS
LOGIC

In this section we present an algebraic approach to a
discretized continuous logic.

Our approach is straightforward once we have a model
for finitely-valued logics, as shown below. Notice that
at a first stage we shall in fact define a crisp partition of
the unit interval, leaving for a future research the case
with fuzzy classes, either in the sense of Ruspini [16]
or Montero et al. [6, 10]. At this stage, five likelihood
levels will be considered in the discretized continuous
logic:

• impossible or very unlikely,

• unlikely,

• dubious,

• probably,

• almost sure or absolutely sure.

The continuous truth values are discretized as follows:

• [0, 1/5) impossible or very unlikely  
 0 in the five-valued logic,

• [1/5, 2/5) unlikely  
 1 in the five-valued logic,

• [2/5, 3/5) dubious  
 2 in the five-valued logic,

• [3/5, 4/5) probably  
 3 in the five-valued logic,

• [4/5, 1] almost sure or absolutely sure  
 4 in the five-valued logic.
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Given a certain logic formula and the numerical truth
values of the propositional variables in the logic for-
mula (ranging in [0, 1]), the process to obtain the likeli-
hood level of the formula in the discretized continuous
logic is the following:

1) compute the polynomial corresponding to the
logic formula,

2) calculate the the corresponding truth values of
the propositional variables in the five-valued logic
(ranging in {0, 1, 2, 3, 4}), as detailed above,

3) substitute the latter truth values in the polyno-
mial,

4) find to which likelihood level the truth value ob-
tained for the formula corresponds.

Let us note that, once the values are discretized, the
value obtained for disjunction and conjunction corre-
spond to maximum and minimum (if one of the usual
finitely-valued logics such as  Lukasiewicz’s or Kleene’s
are chosen). For instance, the truth table of the con-
nective “conjunction”is, in the five-valued case:

∧ 0 1 2 3 4
0 0 0 0 0 0
1 0 1 1 1 1
2 0 1 2 2 2
3 0 1 2 3 3
4 0 1 2 3 4

3.1 IMPLEMENTATION

The code included in Section 2.5 can be reused for
this discretization of a continuous logic. Two more
procedures have to be added:

• tVal substitutes the numerical values in the poly-
nomial translating the logic formula (steps 2) and
3) of Section 3),

• evalFu finds to which likelihood level the truth
value obtained for the formula corresponds (step
4) of Section 3).

Truth value introduction is done in Maple as follows:
if variable x[2] has a truth value 0.65 we assign:

> val(x[2]):=.65;

Let us include a simple example afterwards:

> val(x[1]):=.3:
> val(x[2]):=.1:
> val(x[3]):=.75:

> forml:=x[1] &OR (x[2] &OR x[3]):
> evalFu(tVal(forml));

Probably

4 AN ALGEBRAIC APPROACH TO
RBES

The algebraic model is the same as in the previous sec-
tion, but, instead of computing likelihood levels from
truth values, we perform knowledge extraction (and
verification). In particular, in the above five-valued
logic we have that

• 21f is true iff f has the truth value 4 (true),

• 22f is true iff f has a truth value ≥ 3,

• 32f is true iff f has a truth value ≥ 2,

• 31f is true iff f has a truth value ≥ 1,

• 31f ∨31¬f is always true.

as can be checked in the following truth table

f 31f ∨31¬f 31f 32f 22f 21f
0 4 0 0 0 0
1 4 4 0 0 0
2 4 4 4 0 0
3 4 4 4 4 0
4 4 4 4 4 4

Consequently,

• 21f is true iff f has the truth value 4,

• 22f ∧31¬f is true iff f has the truth value 3,

• 32f ∧32¬f is true iff f has the truth value 2,

• 22¬f ∧31f is true iff f has a truth value 1,

• 21¬f is true iff f has the truth value 0.

as can be checked in the following truth table

f 21f 22f∧ 32f∧ 22¬f 21¬f
31¬f 32¬f ∧31f

0 4 0 0 0 0
1 0 4 0 0 0
2 0 0 4 0 0
3 0 0 0 4 0
4 0 0 0 0 4

Therefore, when translating the rules from the experts’
vocabulary into logic, it has to be considered for which
truth values we want the rule to be fired.
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Example 1: For instance, the rule R1:

22(q) → g

is fired if

the likelihood level of q is “probably”
or “almost sure or absolutely sure”

i.e., if

q has the truth values 3 or 4 in the five-valued logic.

Once discretized, knowledge extraction and consis-
tency checking can be performed using normal forms
and Gröbner bases, exactly as in Section 2.4.

4.1 EXAMPLES IN MAPLE

Example 2: Let us check Example 1 with Maple: 0 is
obtained as the normal form of g with respect to the
ideal generated by a base of ideal I, the negation of the
antecedent and a base of ideal J , when the antecedent
is:

21f or 22f ∧31¬f

and not when the antecedent is:

32f ∧32¬f or 22¬f ∧31f or 21¬f

as shown afterwards:

> R1:=NEC2(q) &IMP g:
> J:=[NEG(R1)]:
> B:=Basis([op(iI),NEG(NEC1(q)),op(J)],Orde):
> NormalForm(NEG(g),B,Orde);

0
> B:=Basis([op(iI),NEG(NEC2(q) &AND
> POS1(NEG(q))),op(J)],Orde):
> NormalForm(NEG(g),B,Orde);

0
> B:=Basis([op(iI),NEG(POS2(q) &AND
> POS2(NEG(q))),op(J)],Orde):
> NormalForm(NEG(g),B,Orde);

4 g + 4
> B:=Basis([op(iI),NEG(NEC2(NEG(q)) &AND
> POS1(q)),op(J)],Orde):
> NormalForm(NEG(g),B,Orde);

4 g + 4
> B:=Basis([op(iI),NEG(NEC1(NEG(q))),op(J)],
> Orde):
> NormalForm(NEG(g),B,Orde);

4 g + 4

Example 3: Let us consider the following tiny 10-
rules RBES (we already include the Maple code, in
order to show its simplicity):

> R1:=NEC1(q) &IMP p2:
> R2:=q &IMP p3:
> R3:=r &IMP p2:
> R4:=r &IMP p3:
> R5:=(q &AND x) &IMP g:
> R6:=NEC1(s) &IMP x:
> R7:=s &IMP p3:
> R8:=u &IMP g:
> R9:=v &IMP p1:
> R10:=w &IMP p2;

Therefore, the ideal of rules (J) is:

> J:=[ NEG(R1),NEG(R2),NEG(R3),NEG(R4),
> NEG(R5),NEG(R6),NEG(R7),NEG(R8),
> NEG(R9),NEG(R10)]:

Let us state as true (i.e., consider the facts):

21(s) and q.

Then the ideal of facts (K) is:

> K:=[NEG(NEC1(s)),NEG(q)]:

Now, do x and g follow from these facts? Let us first
check the consistency for this set of facts, i.e., that
ideal I + J + K is not the whole ring (i.e., that the
corresponding Gröbner basis is not [1]):

> B:=Basis([op(iI),op(J),op(K)], Orde);
B := [1 + g, 1 + p3, p2 + 1, ...]

Now we can check whether x and g follow form this
facts:

> NormalForm(NEG(x),B,Orde);
0

> NormalForm(NEG(g),B,Orde);
0

so both of them do follow.

Example 4: Let us consider the same tiny RBES and
let us now state as true (i.e., consider the facts):

22(s) ∧31(¬(s)) and q.

Then the ideal of facts (K) is:

> K:=[NEG(NEC2(s) &AND POS1(NEG(s))),NEG(q)];

Now, do x and g follow from these facts? The following
Gröbner basis is not [1], so there is consistency for
this set of facts:

> B:=Basis([op(iI),op(J),op(K)], Orde);
5

B := [g + 4 g, 1 + p3, p2 + 1, ...]
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And:

> NormalForm(NEG(x),B,Orde);
4 x + 4

> NormalForm(NEG(g),B,Orde);
4 g + 4

are not 0, so neither x nor g follow from this set of
facts.

5 CONCLUSIONS

The approach presented in this paper provides a first
computational frame for performing effective com-
putations (knowledge extraction and verification) in
RBES whose underlying logic is a continuous logic, by
means of its discretization. The drawback is the com-
plexity of the polynomials involved, that only allow to
treat medium-size RBES (in the Boolean case RBES
with figures like a hundred rules can be treated in a
standard computer in a matter of seconds). Future
research will consider a more sophisticated discretiza-
tion approach in order to implement alternative modal
or fuzzy logics.
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