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in the formulation as particular cases. However, as it has
Abstract been studied in [5-6], a better approach may be the use of
a model that unifies both concepts and at the same time
We introduce a new aggregation operator called considers the degree of importance that each concept may
the heavy ordered weighted averaging — have in the aggregation. This approach is known as the
weighted averaging (HOWAWA) operator. It is ordered weighted averaging — weighted averaging
a new aggregation operator that uses the  (OWAWA) operator [5-6]. Note that a similar approach
weighted average and the ordered weighted  has been suggested in [5,7] by using probabilities.
average in the same formulation and
considering the degree of importance that each ~ Another interesting aggregation approach introduced by

concept has in the analysis. Moreover, by using ~ Yager [16-17] is the heavy OWA (HOWA) operator. The
heavy aggregations, we are allowing the main advantage of this model is that it allows the

weighting vectors to range from the minimum weighting vector to range between the usual OWA and
to the total operator. Thus, we can consider a lot the total operator. Thus, this approach is able to include a
of different particular cases such as the heavy wide range of situations not considered by the usual
weighted average, the heavy OWA, the heavy OWA aggregation. For further information, see, for
arithmetic weighted average and the heavy  €xample [5,8-9,16-17].
arithmetic OWA operator.

The objective of this paper is to present the heavy
Keywords: Aggregation operators, Weighted OWAWA (HOWAWA,) operator. It is a new aggregation

average' OWA Operator, Heavy aggregations_ Operator that prOVideS a unified model that uses OWAS,
WAs, and heavy aggregations. Thus, we are able to

provide a unified model between the OWA and the WA

and at the same time we can allow their weighting vectors
1 INTRODUCTION to move from the usual average to the total operator, that
is, to the sum of all the arguments. One of the main
ﬁ\dvantages of this approach is that it includes a wide

functions) are becoming more relevant in the fuzzy ' @19€ of particular cases such as the heavy weighted

community. Every year we see a lot of new developmentVerage, the heavy OWA operator, different types of

- tial total operator, the arithmetic heavy weighted
and new types of aggregation operators. Some of the modta’ : .
common ones are the weighted average (WA) and th&verage, the arithmetic HOWA, the OWAWA operator,

ordered weighted averaging (OWA) operator [14]. For and a lot of other cases.
further reading on different types of aggregation
operators, see for example [1-5,10,12,15,18].

The aggregation operators (also known as aggregatio

We also study the applicability of the new approach and
we see that it is very broad because we can apply it in a
hIot of fields such as fuzzy set theory, statistics,

concepts in the same formulation. It is worth noting the engineering, decision theory, business and economics. We

work developed by Torra [11] with the introduction of the briefly develop a short illustrative example about the use
weighted OWA (WOWA) operator and the work of Xu of the HOWAWA operator.

and Da [13] about the hybrid averaging (HA) operator. The paper is organized as follows. In Section 2, we briefly

Both approaches arrived to a unified model between the '™ . :
eview some basic concepts and the heavy weighted

OWA and the WA because both concepts were included’ .
P average. Section 3 presents the HOWAWA operator and

Recently, some authors [11-13] have tried to unify bot
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Section 4 studies some of its main families. In Section 5the results obtained by using some kind of average and
we study the applicability of the new approach. Finally, in the sum of all the available results (or arguments), that is,
Section 6 we summarize the main conclusions of thethe total results. For example, in distance measures [5,9]
paper. this is very useful because we can unify in the same
formulation the normalized (or relative) distance with the
absolute (or total) distance. The HWA can be defined as

2 PRELIMINARIES follows:

2.1. THE OWA OPERATOR Definition 3. A HWA operator of dimensiom is a
mapping HWA:R" — R that has an associated weighting
The OWA operator [14] provides a parameterized family vectorW, withw; [J [0, 1] and1< 31, w < n, such that:
of aggregation operators between the maximum and the
minimum. It can be defined as follows. n
HWA(ay, ..., ) = X W3 3)
Definition 1. An OWA operator of dimensiom is a i=1
mapping OWA:R" — R that has an associated weighting

vectorW of dimensiom with er'zle —1 andw, 0 [0, 1], wherea, represents thigh argument variable.

such that: Note that if sl w =1, then, we get the usual weighted

n average and if[l, w = n, then, the total operator.
OWA (a, &,..., &) = ijbj Q)
j=1

] ] 2.4. THE OWAWA OPERATOR
whereb; is thejth largest of they.

The ordered weighted averaging — weighted averaging
(OWAWA) operator is an aggregation operator that
2.2. THE HEAVY OWA OPERATOR unifies the WA and the OWA operator in the same

. ) formulation considering the degree that each concept has
The HOWA operator [16] is an extension of the OWA n the analysis [5-6]. It can be defined as follows.

operator that allows the weighting vector to sum up.to

Thus, we are able to include the total operator in thepefinition 4. An OWAWA operator of dimension is a
aggregation. It can be defined as follows: mapping OWAWA: R® — R that has an associated
weighting vectoiW of dimensionn such thatw; O [0, 1]

Definition 4. A HOWA operator is a mapping HOWAR' and yn Wi =1, according to the following formula:
J:

- Rthat has an associated weighting vedtowith w; O
[0, 1] and1< S0 wi<n, such that:

n
OWAWA (ay, ...,a,) = Z{\/J bJ (4)
n =1
= whereb; is thejth largest of they, each argumers; has

whereb; is thejth largest of they anda is the argument &1 associated weight (WA) with ¥fLv; =1 andv; O
variable. [0, 1], \“/J- = pw; + (1= B)v; with B0 [0, 1] andy, is the

] weight (WA) v; ordered according tly, that is, according
As we can see, ifyfl;w =1, then, we get the usual g thejth largest of the.

weighted average and ¥, w = n, the total operator.
By choosing a different manifestation in the weighting
vector, we are able to obtain a wide range of particular

2 3 THE HEAVY WEIGHTED AVERAGE types of OWAWA oper.ators [5-6]. Especially, whgre
0, we get the WA, and 8= 1, we get the OWA operator.

The heavy weighted average (HWA) is an extension ofOther interesting cases are found wher 1h, for all a,

the weighted average for situations where we allow theP&cause then, we get the arithmetic probability (AP). And
weighting vector to move from the usual weighted If Vi = 1, for alla, we get the arithmetic OWA operator.
average to the total operator. Thus, we get a mord\ote that inside the arithmetic OWA we find the
complete representation of the aggregation process. Not@fthmetic maximum and minimum, and so on.

that the heavy aggregations are very useful for comparing
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n n
3 THE HEAVY OWAWA OPERATOR HOWAWA (@, ....a) = A2 wibj +{1-A) X ua  (6)
j= i=

The heavy ordered weighted averaging — weighted avera- . .
ging (HOWAWA) operator is a nhew model that unifies whereb is thejth largest of they and#1 [0, 1].
the OWA operator and the weighted average in the sam
formulation. Therefore, both concepts can be seen as
particular case of a more general one. Moreover, we allo
the aggregation to move between the minimum and th
total operator. Thus, we can represent a lot of situation
not included in the usual OWA and WA aggregations.

§1 the following, we are going to give a simple example
V\pf how to aggregate with the HOWAWA operator. We
econsider the aggregation with both definitions.

%Example 1. Assume the following arguments in an
aggregation process: (60, 80, 30, 20, 40). Assume the

Note that some previous models already considered théOIIOWing weighting vectorW = (0.6, 0.6, 0.4, 0.2, 0.2)

possibility of using OWA operators and WAs in the same and the following probabilistic weighting vectdr= (0.3,
formulation. The main models are the weighted OWA 03 04, 0.5, O'E:))' No.te that thg WA has a degree of
(WOWA) operator [11-12] and the hybrid averaging importance of 50% wh(;le the weighting vectt of the .
(HA) operator [13]. In this case, we will get the heavy .OWA a_degree O_f 50%. If we want to aggregate t_h|s
WOWA operator and the heavy HA operator. However, if information by using the HOWAWA operator, we W'”
we analyze in detail these models, we will see that thesd®t the followmg.. The aggregation can be soIveq e!ther
formulations cannot deal with heavy aggregations becaus<‘-‘-."Ith (5) C?f (6). With (5) we calculate the new weighting
then, the results and the process become inconsistent. vector as:

In the following, we are going to analyze the HOWAWA vi= 05 08 03 03=045

operator. It can be defined as follows. vV, = 08 06 05 03=045

Definition 5. A HOWAWA tor of di o V3= 05 04 05 05= 045
efinition 5. operator of dimension is a ,= 05 02 05 04=03

mapping HOWAWA: R' - R that has an associated
weighting vectoiW of dimensiomn such thaw; 00 [0, 1] vs = 08 02 03 05=035
and i< 20w <n, according to the following formula:

Then, we calculate the aggregation process as follows:

HOWAWA (ay, ...,a) = > 9;b, (5) HOWAWA = 0.45<80 + 0.4%60 + 0.4%40 + 0.%30 +
j=1 0.35¢20 = 97.

whereb; is thejth largest of they, each argumers; has ~ With (4), we aggregate as follows:
an associated weight (WA) with 1< 3, v <n andv; [
HOWAWA = 0.5x (0.6x 80 + 0.6x 60 + 0.4x 40 + 0.2

[0. 1], ¥ = Awj +@=B)vj with SO0, ] andy isthe 30" 65, 20y + 0.5 (0.3x 60 + 0.3x 80 + 0.4x 30 +
weight (WA)v; ordered according t, that is, according  0.5x 20 + 0.5x 40) = 97.
to thejth largest of the.

Obviously, we get the same results with both methods.
Note that it is also possible to formulate the HOWAWA

operator separating the part that strictly affects thenote that it is possible to distinguish between descending
HOWA operator and the part that affects the HWA. This (DHOWAWA) and ascending (AHOWAWA) orders by
representation is useful to see both models in the samgging W = W, .1, Wherew is the jth weight of the

formulation but it does not seem to be as a uniquepHowAWA and WY the jth weight of the
equation that unifies both models. AHOWAWA operator. K

Definition 6. An HOWAWA operator is a mapping f B s a vector corresponding to the ordered arguntents

HOWAWA: Rn - R of dime_nsion h, if it has an we shall call this the ordered argument vector wAds
associated weighting vect®, with 1<x1_ w; <n andw the transpose of the weighting vector, then, the

0 [0, 1] and a weighting vectov that affects the WA, HOWAWA operator can be expressed as:
with 1< ¥, v <n andv; U [0, 1], such that:
HOWAWA (ay, ...,a,) = W' B (7)

XV Congreso Espafiol Sobre Tecnologias y Légica Fuzzy 287



ESTYLF 2010, Huelva, 3 a 5 de febrero de 2010

The HOWAWA is monotonic, bounded and idempotent. 4 FAMILIES OF HOWAWA OPERATORS

It is monotonic because if > u, for all a, then,
HOWAWA (ay, &y, ..., &) = HOWAWA (uy, Up..., Uy). It
is bounded because the HOWAWA aggregation is
delimitated by the minimum and the total operator. That.
is, Min{a} < HOWAWA (ay, ay,..., a,) < Total operator.

It is idempotent because # = a, for all a, then,
HOWAWA (ay, ay,..., &,) = a. Note that this operator is
not commutative because the weighted average is no&
commutative.

Another interesting issue to analyze are the measures for
characterizing the weighting vectoW. Following a
similar methodology as it has been developed for the,
OWA operator [5,14,16] we can formulate the attitudinal
character, the entropy of dispersion, the divergendd of

and the balance operator. Note that these measures affegt

the weighting vectow but not the WAs because they are
given as some kind of objective information that cannot
be manipulated according to the decision makers interests.
The first measure, the attitudinal character, can be defined
as follows:

@ °

As it can be seeng(W) O [0, 1]. Note that the total
operator hag(W) = 0.5. The second measure, the entropy*®

of dispersion, can be defined as: *
HOW) = ——— 3 w; In| ©

e — wW; In| —— °

Wiz liw .

Note that for the total operatad(W) = — In n. A third .

measure that can be used based on [14], is the divergenee

of W, we will use: .

Div(W) = —— Z

10)
(i) e

If W =n, we get the divergence for the total operator and_
it is the same divergence than the average. ThivgyV)
= (1/12)[h + 1)/(n - 1)].

For the balance operator, we get:

BAL (W) =

n+1- ZJjWJ (11)

W | ]—1( n-1

Note also that these four measures are reduced to the
usual definitions [5,8-9,16-17] whew| = 1

288

Different types of HOWAWA operators are found by
using a different manifestation in the weighting vector or
in the coefficient3. For example, we can obtain the
following cases.

OWAWA operator: Whergn W =1 and¥Lv; =1.

0 The particular cases of the OWAWA

operator are explained in [10].

Total operator: Wheryn_ w, =n and YiLVvo=n.
The total weighted average operator: erjgle =n
and ¥ v =1.
The total heavy weighted average operator: When
Ziaw =n-
The total OWA operator:
W =1-
The total heavy OWA operator: Wh@\”zlvi =n.
The weighted heavy OWA
YiLvi =1,
The OWA heavy weighted average: Whgm W =1

The HOWA operator: I3 = 1.

The heavy weighted average, A& 0.
The heavy average: W, = W|/n andy; =
W/handfs =1, orv; = W|/n andS = 0.
The heavy arithmetic weighted averagemlE MW/in.
The heavy arithmetic OWA operator:Mf= W/n.

The arithmetic heavy weighted averageylf 1.
The arithmetic heavy OWA operator:Mf= 1h.

The arithmetic mean: i = 1h andy;, = 1/, for alli.
The minimum: Whew, = 1,w; = 0, for allj # n andf
=1.

The heavy weighted minimum: Whew = 1,w;, = 0,
for allj #n.

Push up allocation: We usg = (10(W - (- 1)) 0
0 andgB=1.

Heavy weighted push up allocation: We wge= (10
(M- (@ -1)0do.

Weighted push up allocation: In this case,= (1 O

(W -G -1)00andx,v; =
The maximum: Whemv, = 1,vvJ
B=1

Push down allocation: We usg ., = (10(W - ( -

1))) 00 andB = 1.

Heavy weighted push down allocation: In this case,

Wh+1 = (LO(W - ( - 1)) DO.
Weighted push down allocation: We usgj,; = (10

(WM-(-1)00andyl,y; =

Wheny L v =n and

operator:  When

MWi/n, orw, =

=0, for allj # 1 and
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+ Median type allocation: Ifh is even, we allocate the 5 APPLICABILITY OF THE HOWAWA
weights forj = 1 toa asWasj = Was4 = [1 O (W - 2(
—1))/2)]00. If nis odd, we allocate the weights for The HOWAWA operator can be used in a lot of

= 1toaaswWa = 1 antWai§ = Wasgsy = [1 O ([(IWM - applications. In general, we can conclude that the
1)-2(G-1))2)]00. HOWAWA operator can be implemented in all the

« Heavy weighted median allocation: The same than thestudies that use the weighted average or the OWA
median type allocation by 1. operator because both of them are particular cases of this

«  Weighted median allocation: The same than the heavynew approach. Therefore, all the studies that use the
weighted median allocation argll,v; =1 OWA or the WA can be revised and extended with this
1= * o
h. F I ly it in f t
e Step-HOWAWA allocation: Assuming = 1 andb = AEW approach. -or example, e can apply 1 In fuzzy se

: . _ theory, soft computing, statistics, decision theory,
Min[(K = 1), (" = K)], we allocate the weights fgrto operational research, business and economics, politics,
b aswk = 1 andwk+j =wk5 = [LO([(WM - 1)-2( -

engineering and a lot of other sciences such as
1)/2)100.

) ) mathematics, physics, chemistry and biology.
 Heavy weighted step-HOWAWA allocation: We

assumed = Min[(K — 1), (1 — K)], and we allocate the |, e following we are going to develop a simple
weights forj to b aswi = 1 andwicj =Wy = [1 0 nymerical example. Assume we have three experts that
([(|V_V| - 1)-2(-1y2)00. ] are analyzing the benefits of a company for the next year.
* Weighted step-HOWAWA allocation: The same than gynert 1 knows very well the European market of the
the heavy weighted step-HOWAWA allocation and ,mpany Expert 2 the American market and Expert 3 the
Zin=1Vi =1. Asian market. Each of them has confidential information

« Olympic-average allocation: We have to distinguish about the market they are working on. Therefore, when

between two cases. Note that in both cases we Bave predicting the results, each of them gives a general result
=1. that takes into account this confidential information. In

o In the first case, wher&\| <n - 2m, we this example we assume that the three experts have a
allocate the weight as; = M/(n — 2m) for degree of 50% of independence in their information.
j=m+ 1ton-m, andw, = 0 forj = 1 tom Therefore, if we calculate the average result in order to
and forj =n-m+ 1 ton. see the predicted benefits by the experts, we have to allow

o Inthe second case, wheW|p n - 2m, we  the weighting vector to sum up to 1.5 so we take into
allocate the weights ag = 1 forj =m+ 1 account all the information. In this example we assume

to N — M andWips1j = Woomsj = [1 O ([(W] - that all the experts provide information that it is equally

(n-2m)) - 2( - 1))/2)] OO forj = 1 tom. important. Therefore, we use the following weighting

« Heavy weighted olympic allocation: The same thanvector V. = (0.5, 0.5, 0.5). The company is very
the olympic-average allocation bt 1. pessimistic so they want to use an OWA aggregation that

+ Weighted olympic allocation: The same than the reflects this aspect in the following way' = (0.2, 0.2,
0.6).Note that this weighting vector has to be increased

50% obtainingW* = (0.3, 0.3, 0.9). Assume that the

* Arrow-Hurwicz allocation: Assuming th@#= 1, W[ = experts predict the following results:
g and dimensiomn, we define the weights in two

directions, push up and push down. First, we calculate
@g=A0Wg-(-1))00 forj=1tonandw,jsq =
QAO0(@-MNg-(G-21))0O0forj=1ton. Then, we
define the weights as; = w + wi. Note thatw = 0 for

i”nJ_Z Aq :)Ilz AW + 1 andf; = 0 forj<n - (1= A)q If we aggregate this information using a heavy
. 'T'h rl]VVI |W|'. hted A Hurwi location: Th aggregation we get the following. First, we have to mix
€ heavy weighted Arrow-Hurwicz afocation. 1he .. weights of the OWA and the WA in order to provide a

_Sl_?]me thgr;]tthg AAHOW'T_'WW'.CZ alll(l)catlt(?n l_ﬂihl' unified aggregation. In this example, we assume that both
€ weighted Arrow-Hurwicz aflocation. The same concepts have a degree of importance of 50%.

than the heavy weighted olympic allocation and

XV =1 U= 08 03 05¢05=04
v, = 05 03 05<05=04
Note that it is possible to develop other types of 2 _ _
HOWAWA operators by using other manifestations of the 0% 09 05¢05=07
weighting vector of the WA and the OWA.

heavy weighted olympic allocation arE{”zlvi =1.

« Expert 1: 300 millions €.
e Expert 2: 250 millions €.
Expert 3: 350 millions €.

=~
I

<
w
|

HOWAWA = 0.4 x 350 + 0.4 x 300 + 0.7 x 250 = 435.
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[4] D. Gémez and J. Montero, A discussion on
As we can see, assuming the previous conditions, the aggregation operator&ybernetika 40:107-120, 2004.

company W(.)UId assume that the predicted benefit for thE[S] J.M. Merigd,New extensions to the OWA operators

next period is 435 millions €. and its application in decision makingn Spanish).
PhD Thesis, Department of Business Administration,
University of Barcelona, 2008.

[6] J.M. Merig6, On the use of the OWA operator in the

We have presented a new aggregation operator that uses Weighted average and its application in decision
the weighted average and the OWA operator in the same Making. In: Proceedings of the WCE 2009
formulation and considering the degree of importance that ~conference London, United Kingdom, pp. 82-87,
each concept has in the aggregation. Moreover, ths new 2009.

approach allows the weighting vector of the OWA and the[7] J.M. Merigé, Probabilistic decision making with the
WA to range from the usual average to the total operator. OWA operator and its application in investment
Therefore, we have been able to consider a lot of new management. InProceedings of the IFSA-EUSFLAT

aggregation operators. We have called this new approach ConferenceLisbon, Portugal, pp. 1364-1369, 2009.
the HOWAWA operator. We have studied some of its

main particular cases such as the OWAWA operator, thd8] J-M. Merigé and M. Casanovas, Using fuzzy
total operator, the total weighted average operator, the ~Numbers —in  heavy aggregation  operators.
total heavy weighted average operator, the arithmetic ~ !ntérmnational Journal of Information Technolagy,
heavy weighted average, the arithmetic heavy OWA 177-182, 2008.

operator, and a lot of other cases. [9] J.M. Merigé and M. Casanovas, Distance measures in

) o induced and heavy aggregation operators. In:
We have also studied the appllcablllty of the new Proceedings of the EUROFUSE Conference
approach and we have seen that it is very broad because pamplona, Spain, pp. 219-226, 2009.

all the studies that use the OWA or the WA can be revised o ] .

generalized OWA operatorinformation Sciences
In future research, we will develop further extensions of 179:729-741, 2009.

this approach by using other sources of information such11]v. Torra, The weighted OWA operatdnternational

as the use of interval numbers, fuzzy numbers an Journal of Intelligent Systems2:153-166, 1997.
expertons. We will also consider the use of order-

inducing variables and distance measures and we will12]V. Torra and Y. NarukawaModeling Decisions:

develop some applications in decision making problems. ~ Information Fusion and Aggregation Operators
Berlin: Springer-Verlag, 2007.

5 CONCLUSIONS

[13]Z.S. Xu and Q.L. Da, An overview of operators for
Acknowledgements aggregating information.International Journal of
Intelligent Systemd 8:953-968, 2003.

[14]R.R. Yager, On ordered weighted averaging

" aggregation operators in multi-criteria  decision
making. IEEE Transactions on Systems, Man and
Cybernetics B18:183-190, 1988.

[15]R.R. Yager, Families of OWA operatofsuzzy Sets
[1] G. Beliakov, A. Pradera and T. CalvAggregation and System$9:125-148, 1993.
Functions: A Guide for Practitioners Berlin:
Springer-Verlag, 2007.

We would like to thank the anonymous referees for valua-
ble comments that have improved the quality of the paper

References

[16]R.R. Yager, Heavy OWA operatorsFuzzy
Optimization and Decision Making:379-397, 2002.
[2] V. Cutello and J. Montero, Hierarchical aggregation
g)mop\L/J\t/g\tioggFr?)tr%rt?I:en’?:ﬁ':ferrzg?i?)?;rles\]oirr?al rec:?ted their role in decision making under uncertairityzzy
Uncertainty, Fuzziness and Knowledge-Based Sets and Systens39:491-513, 2003.
Systems3:17-26, 1995. [18]R.R. Yager and J. Kacprzythe Ordered Weighted
Averaging Operators: Theory and Applications
Norwell: Kluwer Academic Publishers, 1997.

[17]R.R. Yager, Monitored heavy fuzzy measures and

[3] V. Cutello and J. Montero, Recursive connective
rules. International Journal of Intelligent Systems
14:3-20, 1999.

290 XV Congreso Espafiol Sobre Tecnologias y Logica Fuzzy





