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Abstract

The conventional definition of a distance
(metric) can be extended to apply to col-
lections of more than two elements. In this
paper we introduce a new class of multidis-
tances that we call regular. Regularity, which
can be considered in-between weakness and
strongness properties, is studied for some re-
markable families of multidistances.
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1 INTRODUCTION

The conventional definition of distance over a space
specifies properties that must be obeyed by any mea-
sure of ”how separated” two points in that space are.
However often one wants to measure ”how separated”
the members of a collection of more than two elements
are. The usual way to do it is to combine the distance
values for all pairs of elements in the collection, into an
aggregate measure. Thus, given an Euclidean triangle
(A,B,C) we can combine the distances AB,AC,BC
using, for instance, a 3-dimensional OWA operator,
say W . Then, we calculate the distance of A,B,C by
means of the formula D(A,B,C) = W (AB,AC,BC).
It is clear that we have to choose the weighting vector
of W such that the multi-argument distance function
D satisfies a group of axioms that extend to some de-
gree those for ordinary distance functions. Of course
we can consider other procedures to measure how sep-
arated the vertices A,B,C are: in Euclidean geometry
the Fermat point of a triangle (A,B,C) is the point
F for which the sum of the distances from F to the
vertices is as small as possible; i.e. it is the point F
such that FA+FB +FC is minimized. Then we can
define D(A,B,C) = FA+FB+FC. For pairwise dis-
tances and related distance matrix see for example [1].

A recent paper [3] deals with the problem of aggre-
gating pairwise distance values in order to construct a
multidistance function [8, 5].

In addition to their intrinsic mathematical inter-
est, multidistances have many potential applications.
They can be directly incorporated into many domains:
indistinguishability measures [4], distance–based clus-
tering, pattern recognition, etc., where the extension
of ordinary (binary) distances to multidimensional col-
lections can be of interest. This is also the case of the
so-called Jensen-Shannon divergence (JSD) which is a
distance for probability distributions that have been
used to treat different problems such as annalysis of
symbolic sequences, examination of texts in literature
or separation of quantum states [6, 2].

In this paper we introduce a class of multi-argument
distance functions that we call regular multidistan-
ces. After presenting some basic properties, regular-
ity is studied for three relevant classes of multidis-
tances: OWA–based multidistances, Sum–based mul-
tidistances and Fermat’s multidistances.

2 PRELIMINARIES

Let us begin with the definition of multidistance, given
in [5].

Definition 1 A function D:
⋃
n≥1X

n → [0,∞] is a
multidistance on a set X if it fulfills the following prop-
erties for all n, for all x1, . . . , xn, y ∈ X:

(m1) D(x1, . . . , xn) = 0 if and only if x1 = . . . = xn,

(m2) D(x1, . . . , xn) = D(xπ(1), . . . , xπ(n)) for any per-
mutation π of 1, . . . , n,

(m3) D(x1, . . . , xn) ≤ D(x1, y) + . . .+D(xn, y).

We say that D is a strong multidistance if it fulfills
(m1), (m2) and:
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(m3’) D(x1, . . . , xn) ≤ D(x1,y)+ . . .+D(xk,y) for any
partition1 {x1, . . . ,xk} of x = (x1, . . . , xn), for all
y ∈

⋃
n≥1X

n.

Distances or multidistances taking values in the inter-
val [0, 1] are called normalized.

Remark 1

1) If D is a multidistance on X, then the restriction
of D to X2, D|X2 , is an ordinary distance on X.

2) An ordinary distance d on X can be extended
in order to obtain a multidistance. For ex-
ample, we can define the following function
DM :

⋃
n≥1X

n → [0,∞]:

DM (x) =
{

0 if n = 1,
maxi<j{d(xi, xj)} if n ≥ 2. (1)

Conditions (m1), (m2) and (m3) are easy to ver-
ify and then DM is a multidistance such that
DM |X2 = d. It will be called maximum multi-
distance and it will be treated in Section 3.1.

We will denote by Dd the set of multidistances D
such that D|X2 = d.

Multidistances allow us to define balls centered at
lists [5].

Definition 2 Given a multidistance D and a list x =
(x1, . . . , xn) ∈

⋃
n≥1X

n, the closed ball of center x
and radius r ∈ R is the set:

B(x, r) = {y ∈ X:D(x, y) ≤ D(x) + r}. (2)

This definition is an extension of the usual one for balls
centered at points.

3 REGULAR MULTIDISTANCES

This section deals with the property of regularity for
multidistances. First we give the definition and some
properties and then, the regularity of several classes of
multidistances is studied.

Definition 3 A multidistance D is regular if the fol-
lowing property holds, for all x ∈ Xn and y ∈ X:

D(x) ≤ D(x, y). (3)

That is, the multidistance between the elements of a
list can not decrease if we add an element.

1A partition of x = (x1, . . . , xn) ∈ Xn is a set of lists
{xi = (xi1 , . . . , xini

) ∈ Xni ; i = 1, . . . , k} chosen in such a

way that the set of subindexes {{i1, . . . , ini}, i = 1, . . . , k}
is a partition of {1, . . . , n}.

Remark 2 Regularity has a precise meaning in terms
of the balls centered at lists: a multidistance is regular
if and only if the balls with negative radius are empty.

Regularity can be seen as a first step of strongness:
if we consider a one–part partition, condition (m3’)
reduces to:

D(x) ≤ D(x,y), (4)

but this is equivalent to (3).

As a consequence, we have the following result, relat-
ing these two properties.

Proposition 1 Any strong multidistance is regular.

A particular case of interest for strong multidistances
is when the added element is one of the list.

Proposition 2 If D is a strong multidistance on X,
then

D(x) = D(x, xi) (5)

for all x ∈ Xn, for any element xi of the list x.

Proof: Apply condition (m3’) to the list (x, xi), the
partition {(xi, xi), (x1, . . . , xi−1, xi+1, . . . , xn)} and
the added element xi. As D(xi, xi, xi) = 0 and
D(x1, . . . , xi−1, xi+1, . . . , xn, xi) = D(x), we have
D(x, xi) ≤ D(x).

The condition of regularity D(x) ≤ D(x, xi) completes
the proof.

Therefore, repeated elements are superfluous when
dealing with strong multidistances.

Basic properties of regularity are the following.

Proposition 3 Let D and D′ be regular multidis-
tances on X.

1) D +D′ is also a regular multidistance on X.

2) If k > 0, then kD is also a regular multidistance
on X.

3) D
1+D and min{1, D} are normalized regular mul-
tidistances on X.

From now on we consider a metric space (X, d) with
cardinality |X| ≥ 2. We are going to study the reg-
ularity of some remarkable classes of multidistances
belonging to Dd.

3.1 Regularity of the OWA–based
multidistances

Let W = {Wn;n ≥ 2} be a family of OWAs [7],
where the weights of the

(
n
2

)
–dimensional OWA Wn
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ωn1 , . . . , ω
n

(n
2)

, with ωn1 + . . .+ ωn(n
2)

= 1, are applied to

the list of the
(
n
2

)
pairwise distances arranged in an

increasing order.

We can define a function DW :
⋃
n≥1X

n → [0,∞] in
this way:

DW (x) =


0 if n = 1,

Wn(

(n
2)︷ ︸︸ ︷

d(x1, x2), . . . , d(xn−1, xn))
if n ≥ 2,

(6)

for all x = (x1, . . . , xn) ∈ Xn.

A special case is when Wn = max, with lists of weights
(1, 0, . . . , 0) for all n, obtaining the maximum multi-
distance DM given in (1).

Lemma 1 The multidistance DM is strong.

Proof. Let {x1, . . . ,xk} be a partition of x. We
can suppose that the maximum distance is reached
at x1, x2, that is, DM (x) = d(x1, x2), with x1 ∈ xr,
x2 ∈ xs and xr 6= xs. So, for any component y of the
list y,

DM (x) = d(x1, x2) ≤ d(x1, y) + d(x2, y)
≤ DM (xr,y) +DM (xs,y)
≤
∑k
i=1DM (xi,y).

And if x1, x2 belong to the same part, say xr, then

DM (x) = d(x1, x2) ≤ DM (xr,y)
≤
∑k
i=1DM (xi,y).

Therefore condition (m3’) is fulfilled and hence the
multidistance DM is strong.

The following result gives a necessary and sufficient
condition for these OWA–based functions to be multi-
distances.

Proposition 4 The function DW is a multidistance
if and only if, for all n ≥ 3:

ωn1 + . . .+ ωnn−1 > 0. (7)

Proof: Condition (m2): d and Wn are symmetric and
then DW also is.

As DM is a multidistance (lemma 1),

DW (x) ≤ DM (x) ≤
n∑
i=1

d(xi, y)

for all y ∈ X, and so (m3) holds.

Finally, condition (m1). Let us suppose that DW ful-

fills it. If we take the list (a,

n−1︷ ︸︸ ︷
b, . . . , b), with d(a, b) =

l > 0, then:

0 < D(a,

n−1︷ ︸︸ ︷
b, . . . , b) = Wn(

n−1︷ ︸︸ ︷
l, . . . , l,

(n−1
2 )︷ ︸︸ ︷

0, . . . , 0)
= l · (ωn1 + . . .+ ωnn−1),

that is, ωn1 + . . .+ ωnn−1 > 0.

Reciprocally, let us suppose now (7).

Obviously, if x1 = . . . = xn then D(x) = 0. And if
there exist i, j such that xi 6= xj , then d(xi, xj) > 0.
In this case, for all k 6= i, j either d(xi, xk) > 0 or
d(xj , xk) > 0; that is, there are at least n− 1 non-zero
pairwise distances and so D(x) 6= 0.

The next proposition gives a necessary condition for
an OWA–based multidistance to be regular.

Proposition 5 If a function DW defined by a family
of OWAs W = {Wn;n ≥ 2} is regular, then

ωn1 + . . .+ ωnn−1 = 1, (8)

for all n ≥ 3.

Proof: We will prove it by induction. Let a, b ∈ X
such that d(a, b) = l > 0.

The base case is n = 3. For the lists (a, b) and (a, b, b)
the condition of regularity is l ≤ ω3

1l + ω3
2l, that is,

ω3
1 + ω3

2 = 1.

Now the inductive step. Suppose that (8) holds for n.

Consider the lists (a,

n−1︷ ︸︸ ︷
b, . . . , b) and (a,

n︷ ︸︸ ︷
b, . . . , b), whose

lists of ordered pairwise distances are (

n−1︷ ︸︸ ︷
l, . . . , l,

(n−1
2 )︷ ︸︸ ︷

0, . . . , 0)

and (

n︷ ︸︸ ︷
l, . . . , l,

(n
2)︷ ︸︸ ︷

0, . . . , 0) respectively. The condition of
regularity in this case is:

ωn1 + . . .+ ωnn−1 ≤ ωn+1
1 + . . .+ ωn+1

n ,

and so ωn+1
1 + . . .+ ωn+1

n = 1.

Remark 3 Condition (8) is necessary but it does not
suffice. Let us consider, for example, the OWAs

W3 = (1, 0, 0),
W4 = (0, 0, 1, 0, 0, 0),

fulfilling it and belonging to a family W which defines
a multidistance DW .

For the points (0, 1), (1, 0), (0, 0) in the Euclidean plane
we have the following values, according to (6):

DW ((0, 1), (1, 0), (0, 0)) = W3(
√

2, 1, 1)
=
√

2,
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DW ((0, 1), (1, 0), (0, 0), (0, 0)) = W4(
√

2, 1, 1, 1, 1, 0)
= 1,

and so DW is not regular.

In fact, condition (8) is sufficient if and only if the
range of the distance d consists exactly of two values.

Let us conclude with an example.

Example 1 As we have seen in lemma 1, DM , with
OWAs (1, 0, . . . , 0), is a strong multidistance. On the
opposite side, the OWAs (0, . . . , 0, 1) define the func-
tion Dm:

Dm(x) =
{

0 if n = 1,
mini<j{d(xi, xj)} if n ≥ 2, (9)

which is not a multidistance.

Between them, the multidistance DM+Dm

2 , correspond-
ing to the OWAs ( 1

2 , 0, . . . , 0,
1
2 ), n ≥ 2, which is not

regular.

Finally, if we take the OWAs ( 1
2 ,

1
2 , 0, . . . , 0), n ≥ 2,

then the result is a multidistance DW : the semisum of
the two greatest pairwise distances. It is regular but
in general it is not strong: if there exist three points
a, b, c ∈ X such that d(a, b) < d(a, c) < d(b, c), then

DW (a, b, c) = d(a,c)+d(b,c)
2 ,

DW (a, b, c, c) = d(b, c),

and DW is not strong because it does not fulfill (5).

3.2 Regularity of the sum–based
multidistances

The following multidistances have been defined in [5].
They are based on the sum of the pairwise distance
values for all pairs of elements of the list, multiplied
by a factor λ which depends on its length.

Definition 4 The sum–based multidistances are the
functions Dλ:

⋃
n≥1X

n → [0,∞] defined by

Dλ(x) =
{

0 if n = 1,
λ(n)

∑
i<j d(xi, xj), if n ≥ 2, (10)

where:

(i) λ(2) = 1,

(ii) 0 < λ(n) ≤ 1
n−1 for any n > 2.

With respect to the regularity of these multidistances,
we have the following result.

Proposition 6 The multidistances Dλ are regular if
and only if λ(n) = 1

n−1 for all n ≥ 2.

Proof: First we prove by induction that if the multi-
distance Dλ is regular, then λ(n) = 1

n−1 for all n ≥ 2.

The base case holds by definition: λ(2) = 1.

Suppose now that λ(n − 1) = 1
n−2 . If we take lists of

the form (a, . . . , a, b) we have:

Dλ(
n−2︷ ︸︸ ︷

a, . . . , a, b) = λ(n− 1) · (n− 2)l = l

and

Dλ(
n−1︷ ︸︸ ︷

a, . . . , a, b) = λ(n) · (n− 1)l.

The condition of regularity (3) is

l ≤ λ(n) · (n− 1)l,

that is, λ(n) ≥ 1
n−1 or, taking into account (ii) in

definition 4, λ(n) = 1
n−1 .

Let us see now that the multidistance:

Dλ(x) =

{
0 if n = 1,∑

i<j
d(xi,xj)

n−1 , if n ≥ 2,
(11)

is regular. The condition of regularity (3) is:∑
i<j

d(xi,xj)

n−1 ≤
∑

i<j
d(xi,xj)+

∑n

i=1
d(xi,y)

n

for any y ∈ X, that is,∑
i<j d(xi, xj) ≤ (n− 1)

∑n
i=1 d(xi, y).

But this is fulfilled:∑
i<j d(xi, xj) ≤

∑
i<j(d(xi, y) + d(xj , y))

= (n− 1)
∑n
i=1 d(xi, y).

Remark 4

i) The arithmetic mean of the pairwise distances
corresponds to the multidistance Dλ with λ(n) =
1

(n
2)

, n ≥ 2. It coincides with the multidistance

DW that has the OWAs Wn = ( 1

(n
2)
, . . . , 1

(n
2)

),

n ≥ 2, and it is not regular.

ii) The multidistance Dλ, with λ = 1
n−1 , is not

strong. Consider for example the lists (a, a, b) and
(a, a, b, b), with d(a, b) > 0.

Dλ(a, a, b) = d(a, b),
Dλ(a, a, b, b) = 4

3d(a, b),

but this means, see proposition 2, that Dλ is not
strong.
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iii) There are not multidistances Dλ fulfilling (5):
D(x) = D(x, xi). For example, if d(a, b) > 0 then
it should be

Dλ(a, a, b) = Dλ(a, a, a, b) = Dλ(a, a, b, b),

but
Dλ(a, a, a, b) = λ(4) · 3d(a, b),
Dλ(a, a, b, b) = λ(4) · 4d(a, b),

that is, λ(4) = 0 and Dλ is not a multidistance.

3.3 Regularity of the multidistance of Fermat

This multidistance was defined in [5] and it is based
on the idea of the Fermat point explained in the intro-
duction.

Definition 5 The multidistance of Fermat is the
function DF :

⋃
n≥1X

n → [0,∞] defined by:

DF (x1, . . . , xn) = min
x∈X
{
n∑
i=1

d(xi, x)}. (12)

The following result states the regularity of this mul-
tidistance.

Proposition 7 The multidistance of Fermat DF is
regular.

Proof:

DF (x1, . . . , xn) = minx∈X{
∑n
i=1 d(xi, x)}

≤ minx∈X{
∑n
i=1 d(xi, x) + d(y, x)}

= DF (x1, . . . , xn, y).

Once the regularity of the multidistances of Fermat
has been established, let us deal with the strongness.

Proposition 8 The multidistance of Fermat DF is
not strong.

Proof: Consider the lists (a, a, b) and (a, a, b, b) with
d(a, b) > 0.

DF (a, a, b) = minx∈X{2d(a, x) + d(b, x)}
= d(a, b),

because the minimum is reached at x = a, and

DF (a, a, b, b) = 2 minx∈X{d(a, x) + d(b, x)}
≥ 2d(a, b),

for all x ∈ X, which means, taking into account propo-
sition 2, that DF is not strong.

4 CONCLUSIONS

The property of regularity for multidistances has been
introduced. This property, which is weaker than
strongness, has been study for different families of mul-
tidistances, obtaining in each case complete character-
izations.
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