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Abstract

In this paper we propose the extension of
some aggregation or arithmetic operations
between discrete fuzzy numbers to discrete
fuzzy number-valued multisets such as the
addition, the union and the intersection and,
even, the order. For this reason, we prove or
recall some properties of discrete fuzzy num-
bers and we undertake their study on multi-
sets.

Keywords: Aggregation operators, Multi-
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1 INTRODUCTION

A (crisp) multiset over a set of types X is a mapping
M : X → N. A survey of the mathematics of multisets,
including their axiomatic foundation, can be found in
[1]. In [2], order and triangular operations between
multisets are studied. Multisets are also called bags in
the literature [17].

According to the usual interpretation of a multiset
M : X → N, it describes a set or universe, Ω, which
consists of M(x) “exact” copies of each type x ∈ X,
without specifying which element of the universe is a
copy of which element of X. The number M(x) is
usually called the multiplicity of x in the multiset M .
Notice, in particular, that the set or universe described
by the multiset does not contain any element that is
not a copy of some x ∈ X, and that an element of it
cannot be a copy of two different types. So, each type
x ∈ X defines a subset Ωx of the universe constituted
by their ”exact” copies and we have Ωx ∩ Ωy = ∅, if
x 6= y and Ω =

⋃
x∈X Ωx. The multiplicity, M(x), of

x in the multiset M is the cardinal of the subset Ωx.

In [2], the authors introduced a more general defini-
tion of ”extended multiset” as mappings M : X → L,
where L is a finite or infinite chain of natural num-
bers, or, even, it can be N = N ∪ {∞}, with the usual
operations and order. This definition allows to extend
several aggregation operators defined in L, such as t-
norms or t-conorms, to multisets.

A natural generalization of this interpretation of mul-
tisets leads to the notion of multisets with fuzzy values
[11, 12] over a set of types X. Such a multiset de-
scribes for each x ∈ X, a set consisting of ”possibly
inexact” copies of x with a degree of similarity val-
ued in [0,1]. In this way, in [12] an immediate gen-
eralization of crisp multisets using fuzzy numbers in-
stead of natural numbers is proposed. So, provided a
suitable definition of fuzzy number (triangular, trape-
zoidal, Gauss-shaped, etc [10]), it is possible to con-
sider fuzzy Number-Valued multisets defined over X.

In this paper we impose two restrictions on this inter-
pretation of a fuzzy multiset, parallel to those high-
lighted in the crisp case, that allows us to slightly mod-
ify this definition. First, we assume that if an element
of the set is an inexact copy of x with a degree of sim-
ilarity t > 0, then it cannot be an inexact copy of any
other type in X with a non-negative degree of similar-
ity. And second, the set or universe described by the
fuzzy multiset does not contain any element that is not
a copy of some x ∈ X with some non-negative degree
of similarity. These two conditions entail that each
type x ∈ X defines a fuzzy subset Ωx of the universe
Ω constituted by all the copies of x, each one with its
degree of similarity with x and we have Ωx ∩ Ωy = ∅,
if x 6= y and Ω =

⋃
x∈X Ωx, i.e. Ωx(w) ∧ Ωy(w) = 0

and
∨
x∈X Ωx(w) = 1 for all w ∈ Ω.

In order to define a ”multiplicity” or fuzzy multiplicity
of each type for a fuzzy multiset over X, we need to
associate to each x ∈ X the cardinality of the fuzzy
set Ωx. The problem of “counting” fuzzy sets has gen-
erated a lot of literature since Zadeh’s first definition
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of the cardinality of fuzzy sets [9, 10]. In particular,
the scalar cardinalities of fuzzy sets, which associate to
each fuzzy set a positive real number, have been stud-
ied from the axiomatic point of view [8, 16] with the
aim of capturing different ways of counting additive
aspects of fuzzy sets like the cardinalities of supports,
of levels, of cores, etc. In a similar way, the fuzzy
cardinalities of fuzzy sets [7, 9, 16], which associate to
any fuzzy set a convex fuzzy natural number, have also
been studied from the axiomatic point of view.

In this paper, taking into account that the fuzzy car-
dinality of a fuzzy set is a fuzzy natural number,ie,
a discrete fuzzy number whose support is a subset of
consecutive natural numbers, we consider a Fuzzy Nat-
ural Number-Valued multiset defined over a set X as
a mapping M : X → FNN where FNN is the set of
discrete fuzzy numbers with support a subset of con-
secutive natural numbers.

In order to define some operations in this framework,
the first step is to recall the operations between fuzzy
natural numbers. If we know that the set of fuzzy
natural numbers is closed with respect to an opera-
tion, O, we can define an operation between multisets
functionally: O(M,N)(x) = O(M(x), N(x)),∀x ∈ X.
Thus, we study the addition, the union and the inter-
section as functionally defined extensions of operations
between fuzzy natural numbers.

2 PRELIMINARIES

2.1 Multisets

Let X be a crisp set. A (crisp) multiset over X is a
mapping M : X → N, where N stands for the set of
natural numbers including the 0. A multiset M over
X is finite if its support

supp(M) = {x ∈ X|M(x) > 0}

is a finite subset of X. We shall denote the sets of
all multisets and of all finite multisets over a set X by
MS(X) and FMS(X), respectively, and by ⊥ the null
multiset, defined by ⊥(x) = 0 for each x ∈ X.

For every A,B ∈MS(X), their sum [13] A+B is the
multiset defined pointwise by

(A+B)(x) = A(x) +B(x), x ∈ X.

Let us mention here that it has been argued that this
sum +, also called additive union, is the right notion of
union of multisets. According to the interpretation of
multisets as sets of copies of types explained in the in-
troduction, this sum corresponds to the disjoint union
of sets, as it interprets that all copies of each x in the
set represented by A are different from all copies of it

in the set represented by B. This additive sum has
quite different properties from the ordinary union of
sets. For instance, the collection of submultisets of a
given multiset is not closed under this operation and
consequently no sensible notion of complement within
this collection exists.

For every A,B ∈ MS(X), their join A ∨ B and
meet A ∧ B are respectively the multisets over X de-
fined pointwise by (A∨B)(x) = max(A(x), B(x)) and
(A ∧ B)(x) = min(A(x), B(x)) , x ∈ X. If A and
B are finite, then A + B, A ∨ B and A ∧ B are also
finite. A partial order ≤ on MS(X) is defined by
A ≤ B if and only if A(x) ≤ B(x) for every x ∈ X.
If A ≤ B, then their difference B − A is the multiset
defined pointwise by

(B −A)(x) = B(x)−A(x).

2.2 Discrete Fuzzy Numbers

By a fuzzy subset of the set of real numbers, we mean
a function u : R→ [0, 1]. For each fuzzy subset u, let
uα = {x ∈ R :u(x) ≥ α} for any α ∈ (0, 1] be its α-
level set (or α-cut). By supp(u), we mean the support
of u, i.e. the set {x ∈ R :u(x) > 0}. By u0, we mean
the closure of supp(u).

Definition 2.1 [14] A fuzzy subset u of R with mem-
bership mapping u : R →[0, 1] is called discrete
fuzzy number if its support is finite, i.e., there are
x1, ..., xn ∈ R with x1 < x2 < ... < xn such that
supp(u) = {x1, ..., xn}, and there are natural numbers
s, t with 1 ≤ s ≤ t ≤ n such that:

1. u(xi)=1 for any natural number i with s ≤ i ≤ t
( core)

2. u(xi) ≤ u(xj) for each natural number i, j with
1 ≤ i ≤ j ≤ s

3. u(xi) ≥ u(xj) for each natural number i, j with
t ≤ i ≤ j ≤ n

Remark 2.2 If the fuzzy subset u is a discrete fuzzy
number then the support of u coincides with its closure,
i.e. supp(u) = u0.

From now on, the notation DFN stands for the set of
discrete fuzzy numbers.

Remark 2.3 In general, the operations on fuzzy num-
bers can be approached either by the direct use of their
membership function as fuzzy subsets of R using the
Zadeh’s extension principle or by the equivalent use of
the α-cuts representation[10]. Nevertheless, if u, v are
discrete fuzzy numbers, these processes:

(u⊕ v)(z) = sup
z=x+y

min(u(x), v(y)),∀z ∈ R
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MIN(u, v)(z) = sup
z=min(x,y)

min(u(x), v(y)),∀z ∈ R

MAX(u, v)(z) = sup
z=max(x,y)

min(u(x), v(y)),∀z ∈ R

can yield fuzzy subsets that do not satisfy the condi-
tions to be discrete fuzzy numbers [3, 15].

In [3, 4, 5, 15], this drawback is studied and a new
method to define these operations is proposed. So,
let u, v be two discrete fuzzy numbers and uα =
{xα1 , · · · , xαp }, vα = {yα1 , · · · , yαk } their α-cuts respec-
tively. And, for each pair of subsets X,Y ⊂ R and
O a binary operation in R, we will consider the set
XOY = {z = xOy, x ∈ X, y ∈ Y }. Then, the next
result holds [15]:

Theorem 2.4 Let u, v ∈ DFN , the fuzzy subset de-
noted by u⊕

W
v, such that it has as r-cuts the sets

[u⊕
W
v]r = {x ∈ supp(u) + supp(v) : min([u]r +

[v]r) ≤ x ≤ max([u]r + [v]r)} for each r ∈ [0, 1]
where min([u]r + [v]r) = min{x : x ∈ [u]r + [v]r},
max([u]r + [v]r) = max{x : x ∈ [u]r + [v]r} and
(u⊕

W
v)(x) = sup{r ∈ [0, 1] such that x ∈ [u⊕

W
v]r} is

a discrete fuzzy number.

On the other hand, in [5], for each u, v ∈ DFN the
following sets are considered:

MINw(u, v)α = {z ∈ supp(u)
∧
supp(v) such that

min(xα1 , y
α
1 ) ≤ z ≤ min(xαp , y

α
k )} and

MAXw(u, v)α = {z ∈ supp(u)
∨
supp(v) such that

max(xα1 , y
α
1 ) ≤ z ≤ max(xαp , y

α
k )} for each α ∈ [0, 1]

where supp(u)
∧
supp(v) = {z = min(x, y)|x ∈

supp(u), y ∈ supp(v)} and supp(u)
∨
supp(v) = {z =

max(x, y)|x ∈ supp(u), y ∈ supp(v)}.

And the following result is obtained:

Proposition 2.5 [5] For each u, v ∈ DFN , there ex-
ist two unique discrete fuzzy numbers, which we will
denote by MINw(u, v) and MAXw(u, v), such that
they have the above defined sets MINw(u, v)α and
MAXw(u, v)α as α-cuts respectively.

3 Addition of Fuzzy Natural Numbers

Now, we wish to study some properties of the addi-
tion of fuzzy natural numbers (discrete fuzzy numbers
whose support is a subset of consecutive natural num-
bers).

It is well known [10] that, in the case of continuous
fuzzy numbers the addition obtained by extending the

usual addition of real numbers through the extension
principle is associative and commutative. But the
fuzzy natural numbers are not continuous on R.

In [4], the authors proved that in the case in which the
discrete fuzzy numbers have as support an arithmetic
sequence or a subset of consecutive natural numbers
it is possible to use the Zadeh’s extension principle to
obtain its addition. Moreover, we know [15] the next
result:

Proposition 3.1 Let’s consider u, v ∈ DFN . If
u⊕ v ∈ DFN where u⊕ v denotes the addition of u
and v using the Zadeh’s extension principle, then u⊕v
and u⊕

W
v are identical, where u⊕

W
v is the discrete

fuzzy number obtained from u and v using theorem 2.4.

Remark 3.2 A consequence of the previous proposi-
tion is that if we prove a property for the operation
⊕
W

in the set of fuzzy natural numbers FNN , we will

obtain the same property for the operation ⊕ in this
set.

From now on, the notation fnn stands for a fuzzy
natural number.

Lemma 3.3 Let u, v and w be three fnn such that
their supports are supp(u), supp(v) and supp(w) re-
spectively. The following properties hold:

1. Commutativity

supp(u) + supp(v) = supp(v) + supp(u)

2. Associativity

(supp(u) + supp(v)) + supp(w) =

= supp(u) + (supp(v) + supp(w))

Proof Let’s denote by X, Y and Z the sets
supp(u),supp(v) and supp(w) respectively.

1. Using the commutative property of the addition
of real numbers the proof is straightforward.

2. Associativity

If z ∈ (X+Y )+Z then z = x+c where x = a+b,
a ∈ X, b ∈ Y and c ∈ Z. So z = (a+b)+c. Using
the associativity of the addition of real numbers,
z = (a+b)+c = a+(b+c). Then z ∈ X+(Y +Z).
Therefore

(X + Y ) + Z ⊆ X + (Y + Z)

If z ∈ X+(Y +Z) then z = a+x where x = b+c,
a ∈ X, b ∈ Y and c ∈ Z. So z = a+(b+c). Using
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the associativity of the addition of real numbers,
z = a+(b+c) = (a+b)+c. Then z ∈ (X+Y )+Z.
Therefore

X + (Y + Z) ⊆ (X + Y ) + Z

Theorem 3.4 For any, u, v, w ∈ FNN , the following
properties hold:

a) Commutativity:

u⊕
W
v = v ⊕

W
u

b) Associativity:

(u⊕
W
v)⊕

W
w = u⊕

W
(v ⊕

W
w)

c) Neutral element, i.e., u⊕
W

0̂ = u for all u ∈ DFN

where 0̂ is the dfn 0̂(x) =

{
1 if x = 0
0 if x 6= 0

Proof: Let u, v and w be three fnn. Let’s consider
the α-cut sets: uα = {xα1 , ..., xαp }, vα = {yα1 , ..., yαk },
wα = {wα1 , ..., wαl } for u, v and w respectively.

a) We want to show that

u⊕
W
v = v ⊕

W
u

It is enough to prove that the fnn u⊕
W
v and v ⊕

W
u are

the same α-cut sets for each α ∈ [0, 1], where (u⊕
W
v)0

denotes the support of u ⊕
W
v.

By definition (u ⊕
W

v)α = {z ∈ supp(u) +

supp(v) such that

min (uα + vα) ≤ z ≤ max (uα + vα)} =

(by the monotonicity of the addition of natural
numbers)={z ∈ supp(u) + supp(v) such that

( min uα + min vα) ≤ z ≤ ( max uα + max vα)} =

{z ∈ supp(u) + supp(v)|(xα1 + yα1 ) ≤ z ≤ (xαp + yαk )} =

{z ∈ supp(u) + supp(v)|(yα1 + xα1 ) ≤ z ≤ (yαp + xαk )} =

(v ⊕
W
u)α

b) We want to see that

(u⊕
W
v)⊕

W
w = u⊕

W
(v ⊕

W
w)

By definition ((u ⊕
W
v) ⊕

W
w)α = {z ∈ supp(u ⊕

W
v) +

supp(w) such that

min((u⊕
W
v)α + wα) ≤ z ≤ max((u ⊕

W
v)α + wα)} =

(by the monotonicity of the addition of natural
numbers)= {z ∈ supp(u ⊕

W
v) + supp(w) such that

min(u⊕
W
v)α+minwα ≤ z ≤ max(u⊕

W
v)α+maxwα} =

{z ∈ supp(u ⊕
W
v) + supp(w) such that

(xα1 + yα1 ) + wα1 ≤ z ≤ (xαp + yαk ) + wαl } =

{z ∈ (supp(u) + supp(v)) + supp(w) such that

(xα1 + yα1 ) + wα1 ≤ z ≤ (xαp + yαk ) + wαl } =

= {z ∈ (supp(u) + supp(v)) + supp(w) such that

xα1 + (yα1 + wα1 ) ≤ z ≤ xαp + (yαk + wαl )} =

{z ∈ supp(u) + (supp(v) + supp(w)) such that

xα1 + (yα1 + wα1 ) ≤ z ≤ xαp + (yαk + wαl )} =

{z ∈ supp(u) + (supp(v ⊕
W
w)) such that

xα1 + (yα1 + wα1 ) ≤ z ≤ xαp + (yαk + wαl )} =

= (u⊕
W

(v ⊕
W
w))α

c) Neutral element: (u⊕
W

0̂)(x) = (u⊕
W

0̂)(x + 0) =

supz=x+0(min(u(x), 0̂(0))) =

supz=x+0(min(u(x), 1)) = u(x) for all x ∈
supp(u).

Corollary 3.5 The set FNN of the fuzzy natural
numbers is a commutative monoid with the Zadeh’s
addition as a monoidal operation.

4 Maximum and Minimum of Fuzzy
Natural Numbers

With respect to the maximum and the minimum of
two fuzzy natural numbers, the authors have proved
in [5] the following proposition:

Proposition 4.1 [5] Let u, v be two fuzzy natural
numbers. Then MAX(u, v), defined through the ex-
tension principle, coincides with MAXw(u, v). So, if
u, v ∈ FNN , MAX(u, v) is a fuzzy natural number
and MAX(u, v) ∈ FNN . Analogously, MIN(u, v),
defined through the extension principle, coincides with
MINw(u, v). So, if u, v ∈ FNN , then MIN(u, v) is
a fuzzy natural number and MIN(u, v) ∈ FNN .
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But we have studied in [6] the associativity, commu-
tativity, idempotence, absortion and distributivity for
the operations MINw and MAXw between discrete
fuzzy numbers in general and between fuzzy natural
numbers in particular and we obtained the following
proposition:

Proposition 4.2 [6] The set of discrete fuzzy num-
bers whose support is a sequence of consecutive natu-
ral numbers (FNN ,MINw,MAXw) is a distributive
lattice.

If we gather the previous propositions 4.1 and 4.2, then
we obtain the following proposition:

Proposition 4.3 [6] The set of discrete fuzzy num-
bers whose support is a sequence of consecutive natural
numbers (FNN ,MIN ,MAX) is a distributive lattice.

With the aim of studying the monotony for the addi-
tion of two fuzzy natural numbers, we need a definition
of order:

Definition 4.4 [6] Using the operations MINw and
MAXw, we can define a partial order on FNN on the
following way:
u � v if and only if MINw(u, v) = u, or equivalently,
u � v if and only if MAXw(u, v) = v for any u, v ∈
FNN . Equivalently, we can also define the partial
ordering in terms of α-cuts:

u � v if and only if min(uα, vα) = uα

u � v if and only if max(uα, vα) = vα

Proposition 4.5 Let u, v, w, t ∈ FNN . If u � v and
w � t where � denotes the partial order in FNN de-
fined in definition 4.4 then u ⊕ w � v ⊕ t, where ⊕
denotes the Zadeh’s addition.

Proof: From [6], we know that u � v iff MIN(u, v) =
u iff min(uα, vα) = uα for all α ∈ [0, 1]. And analo-
gously, w � t iff MIN(w, t) = w iff min(wα, tα) = wα

for all α ∈ [0, 1].

Let uα = {aα1 , · · · , aαk}, vα = {bα1 , · · · , bαm}, wα =
{cα1 , · · · , cαn} and tα = {dα1 , · · · , dαp } the α-cuts of
u, v, w and t respectively for α ∈ [0, 1]. By defini-
tion of the addition of natural fuzzy numbers [4] the
α-cuts of u ⊕ w and v ⊕ t are the sets of consecutive
natural numbers (u ⊕ w)α = {aα1 + cα1 , · · · , aαk + cαn}
and (v ⊕ t)α = {bα1 + dα1 , · · · , bαm + dαp }.

Now, we want to prove that MIN(u⊕w, v⊕t) = u⊕w,
or equivalently [6], MIN(u⊕w, v⊕ t)α = (u⊕w)α for
all α ∈ [0, 1].

So, MIN(u⊕w, v⊕t)α = {z ∈ supp(u⊕w)∧supp(u⊕
t) : min((u⊕w)α∧(v⊕t)α) ≤ z ≤ max((u⊕w)α∧(v⊕

t)α)}={z ∈ supp(u⊕w)∧ supp(v⊕ t) : aα1 + cα1 ≤ z ≤
aαk + cαn}=(as u ⊕ w has a set of consecutive natural
numbers as a support and the addition is a monotone
operation) = {z ∈ supp(u ⊕ w) : aα1 + cα1 ≤ z ≤ aαk +
cαn}= (u⊕ w)α.

5 Operations on FNN-VALUED
MULTISETS

Definition 5.1 A Fuzzy Natural Number-valued mul-
tiset defined over an universe X is a mapping M :
X → FNN i.e. for all x ∈ X, M(x) is a fuzzy natu-
ral number.

Remark 5.2 We will denote the set of Fuzzy Natural
Number-valued multisets defined over an universe X
by FNNM(X). Finally, the abbreviation fnnm will
denote a Fuzzy Natural Number-valued multiset.

The properties of the addition of fuzzy natural num-
bers studied in the previous section, will allow us to de-
fine the addition of fuzzy natural number-valued mul-
tisets and to study the monoidal structure of this set.

5.1 Monoid structure

Definition 5.3 Let A,B : X → FNN be two Fuzzy
Natural Number-valued multisets. The sum of A and
B will be the Fuzzy Natural Number-valued Multiset
pointwise defined for all x ∈ X by

(A+B)(x) = A(x)⊕B(x)

where the fnn A(x) ⊕ B(x) is obtained following the
Zadeh’s extension principle or equivalently using the
method considered in theorem 2.4.

Proposition 5.4 The set FNNM(X) of the fuzzy
natural number-valued multisets over X is a commuta-
tive monoid with the addition as a monoidal operation.

Proof: The proof is straightforward from the corol-
lary 3.5 and the definition of addition of fuzzy natural
number-valued multisets 5.3.

5.2 Lattice structure and order

Analogously to the addition, the properties of the max-
imum and minimum of fnn studied in the previous sec-
tion will allow us to define the maximum and minimum
of fuzzy natural number-valued multisets and to study
the order and the lattice structure of this set.

Definition 5.5 Let A,B : X → FNN be two Fuzzy
Natural Number-valued Multisets. The join and the
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meet of A and B will be the Fuzzy Natural Number-
valued Multiset, pointwise defined for all x ∈ X as

(A ∨B)(x) = MAX{A(x), B(x)}

(A ∧B)(x) = MIN{A(x), B(x)}

respectively,
where the fuzzy natural numbers MAX{A(x), B(x)}
and MIN{A(x), B(x)} are obtained according to the
method presented in proposition 2.5.

Proposition 5.6 As long as, for all x ∈ X, A(x) ∈
FNN and B(x) ∈ FNN , then MAX{A(x), B(x)}
and MIN{A(x), B(x)} can be obtained by means of
the extension principle.

Proof: By proposition 4.1, if A(x) ∈ FNN
and B(x) ∈ FNN , then the extension principle
yields a discrete fuzzy number that it coincides with
MAX{A(x), B(x)} ∈ FNN (or MIN{A(x), B(x)}).

Proposition 5.7 Let A,B : X → FNN be two Fuzzy
Natural Number-valued Multisets. The binary rela-
tionship:
A ≤ B if and only if A ∨ B = B and/or A ∧ B =
A i.e. MAX{A(x), B(x)} = B(x),∀x ∈ X (or
MIN{A(x), B(x)} = A(x),∀x ∈ X) is a partial or-
der on the set FNNM(X).

Proposition 5.8 The set FNNM(X) of the fuzzy
natural number-valued multisets over X is a lattice
with the partial order defined in proposition 5.7 and the
meet and join operations proposed in definition 5.5.

Proof: The proof is straightforward from the lattice
structure considered in proposition 4.2.
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