SPECIFICITY FOR INTERVAL-VALUED FUZZY SETS USING AGGREGATION OPERATORS

Ramón González-del-Campo¹ Luis Garmendia¹ Victoria López¹

Universidad Complutense de Madrid¹ rgonzale@estad.ucm.es, lgarmend@fdi.ucm.es, vlopez@fdi.ucm.es

Abstract

This paper proposes a new approach of measure of specificity for interval-valued fuzzy sets. It is showed a general expression of specificity which generalize the linear measure of specificity of Yager. Some examples are proposed.

Keywords: Specificity, Interval-valued fuzzy set.

1 Introduction

Interval-valued fuzzy sets (\mathcal{IVFS}) were introduced in the 60s by Grattan-Guinness [7], Jahn [8], Sambuc [9] and Zadeh [12]. They are extensions of classical fuzzy sets where the membership degree of the elements on the universe of discourse (between 0 and 1) is replaced by an interval in $[0,1] \times [0,1]$. They easily allow to model uncertainty and vagueness generalizing the fuzzy sets. Sometimes it is easier for experts to give a "membership interval" than a membership degree to objects on a universe. \mathcal{IVFS} are a special case of type-2 fuzzy sets that simplifies the calculations while preserving their richness as well.

Fuzzy sets are a good tool to model imprecision due to vagueness. \mathcal{IVFS} can also measure the imprecision due to uncertainty.

The concept of specificity provides a measure of the amount of information contained in a fuzzy set. It is strongly related to the inverse of the cardinality of a set. Specificity measures were introduced by Yager [10, 11] showing its usefulness as a measure of tranquility when making a decision. The output information of expert systems and other knowledgebased system should be both specific and correct to be useful.

Specificity for fuzzy sets has been widely analyzed in [3, 4, 5].

2 Preliminaries

Let $X = \{a_1, ..., a_n\}$ be a finite set.

Definition 2.1 A fuzzy set μ on X is normal if there exists an element $x \in X$ such that $\mu(x) = 1$

Definition 2.2 [11] Let $[0,1]^X$ be the set of fuzzy sets on X. Let a_j be the j^{th} greatest membership degree of μ . A measure of specificity is a function $Sp:[0,1]^X \to [0,1]$ such that:

- $Sp(\mu) = 1$ if and only if μ is a singleton.
- $Sp(\emptyset) = 0$

•
$$-\frac{\partial Sp(\mu)}{\partial a_1} > 0$$
$$-\frac{\partial Sp(\mu)}{\partial a_j} \le 0 \text{ for all } j \ge 2$$

Definition 2.3 [11] Let $[0,1]^X$ be the set of fuzzy sets on X. A weak measure of specificity is a function $Sp:[0,1]^X \to [0,1]$ such that:

- $Sp(\mu) = 1$ if and only if μ is a singleton.
- $Sp(\emptyset) = 0$
- If μ and η are normal fuzzy sets in X and $\mu \subset \eta$, then $Sp(\mu) \geq Sp(\eta)$.

Definition 2.4 Let Sp and Sp' be two measures of specificity. Sp is more strict than Sp', denoted by $Sp \leq Sp'$, if for all set, μ , it verifies: $Sp(\mu) \leq Sp'(\mu)$.

Yager indroduced [11] the linear measure of specificity on a finite space X as:

$$Sp_{\overrightarrow{w}}(\mu) = y_1 - \sum_{j=2}^n w_j y_j$$

where y_j is the j^{th} greatest membership degree of μ and $\{w_j\}$ is a set of weights verifying:

- $w_j \in [0,1]$
- $\bullet \ \Sigma_{j=2}^n w_j = 1$
- $\{w_i\}$ is not increasing.

Definition 2.5 [2] Let $\mathcal{L}=(L, \leq_L)$ be a lattice that satisfies:

- 1. $L = \{[x_1, x_2] \in [0, 1]^2 \text{ with } x_1 \leq x_2\}.$
- 2. $[x_1, x_2] \leq_L [y_1, y_2]$ if and only if $x_1 \leq y_1$ and $x_2 \leq y_2$

Also by definition:

$$[x_1, x_2] <_L [y_1, y_2] \Leftrightarrow x_1 < y_1, x_2 \le y_2$$
 or $x_1 \le y_1, x_2 < y_2$ $[x_1, x_2] =_L [y_1, y_2] \Leftrightarrow x_1 = y_1, x_2 = y_2.$

 $0_L=_L[0,0]$ and $1_L=_L[1,1]$ are the smallest and the greatest elements in L respectively.

 \mathcal{L} is a complete lattice and the supremum and infimum are defined as follows.

Definition 2.6 [1] Let $\{[v_i, w_i]\}$ be a set of intervals on L. Then

- 1. Infimum: $Meet\{[v_i, w_i]\} \equiv [infimun\{v_i\}, infimun\{w_i\}]$
- 2. Supremum: $Joint\{[v_i, w_i]\}$ \equiv $[supremun\{v_i\}, supremun\{w_i\}]$

Definition 2.7 [2] An interval-valued fuzzy set A on a universe X can be represented by the mapping:

$$A = \{(a, [x_1, x_2]) \mid a \in X, [x_1, x_2] \in L\}$$

Definition 2.8 [2] Let X be a universe and A and B two interval-valued fuzzy sets. The equality between A and B is defined as: $A =_L B$ if and only if $A(a) =_L B(a) \ \forall a \in X$.

Definition 2.9 [2] Let X be a universe and A and B two interval-valued fuzzy sets. The inclusion of A in to B is defined as: $A \subseteq_L B$ if and only if $A(a) \leq_L B(a)$ $\forall a \in X$.

Definition 2.10 [2] A negation function for intervalvalued fuzzy sets N is a decreasing function, $N: L \to L$, that satisfies:

1.
$$N(0_L) =_L 1_L$$

2.
$$N(1_L) =_L 0_L$$

If $N(N([x_1, x_2])) =_L [x_1, x_2]$ then N is called an involutive negation.

Definition 2.11 A strong negation function for interval-valued fuzzy sets, N, is a strictly decreasing and involutive function, $N: L \to L$, that satisfies:

1.
$$N(0_L) =_L 1_L$$

2.
$$N(1_L) =_L 0_L$$

Example 2.1 Let N be the involutive mapping defined by:

$$N: L \to L$$

 $N([x_1, x_2]) =_L [1 - x_2, 1 - x_1]$

Then N is a negation operator for interval-valued fuzzy sets. It is trivial to prove that: $N(0_L) =_L 1_L$, $N(1_L) =_L 0_L$ and $N(N([x_1, x_2])) =_L [x_1, x_2]$.

3 Specificity for Interval-valued Fuzzy Sets

Definition 3.1 An operator $f:[0,1]^2 \to [0,1]$ with $x \leq y$ is called transformation operator if it is continuous, increasing and verifies:

- 1. f(1,1) = 1
- 2. f(0,0) = 0
- 3. f(0,x) > 0 for all $x \in (0,1]$
- 4. f(x,1) < 1 for all $x \in [0,1)$

Definition 3.2 Let μ be an interval-valued fuzzy set on X and let $\mu(a_q) = [x_{1_q}, x_{2_q}]$ be its membership intervals. Let f be a transformation operator. Then, the f-list of μ is the set of all the membership intervals of elements of X, ordered through the operator f, that is, $[x,y] \leq_f [z,t]$ if and only if $f(x,y) \leq f(z,t)$:

Definition 3.3 An interval-valued fuzzy set μ on X is a singleton if there exists an element $a_i \in X$ such that $\mu(a_i) = 1_L$ and $\mu(a_j) = 0_L$ (for all $j \neq i$) for the others.

Definition 3.4 Let $([0,1]^2)^X$ be the set of intervalvalued fuzzy sets on X. Let f be a transformation operator. Let $\{[x_{1_q}, x_{2_q}]\}$ for all q = 1..n be the f-list of μ . A f-measure of specificity for interval-valued fuzzy sets is a function $Sp_f: ([0,1]^2)^X \to [0,1]$ such that:

- $Sp_f(\mu) = 1$ if and only if μ is a singleton.
- $Sp_f(\emptyset) = 0$.
- If $[x_{1_1}, x_{2_1}]$ increases (according to \leq_L) then $Sp_f(\mu)$ increases.
- If $[x_{1_q}, x_{2_q}]$ increases (according to \leq_L) then $Sp_f(\mu)$ decreases for all q:2..n.

Definition 3.5 An interval-valued fuzzy set μ on Xis normal if there exists an element $a \in X$ such that $\mu(a) = 1_L$

Definition 3.6 [6] Let $([0,1]^2)^X$ be the set of intervalvalued fuzzy sets on X. A weak measure of specificity for interval-valued fuzzy sets is a function $Sp:([0,1]^2)^X \to [0,1] \ such \ that:$

- $Sp(\mu) = 1$ if and only if μ is a singleton.
- $Sp(\emptyset) = 0$
- If μ and η are normal fuzzy sets in X and $\mu \subseteq_L \eta$, then $Sp(\mu) \geq Sp(\eta)$.

Lemma 3.1 If Sp_f is a f-measure of specificity for interval-valued fuzzy sets then Sp_f is a weak measure of specificity for interval-valued fuzzy sets.

Proof

Let $\{[x_{1_q}, x_{2_q}]\}$ and $\{[y_{1_q}, y_{2_q}]\}$ for all q = 1..n be the flist of μ and η respectively. If μ and η are normal and $\mu \subseteq_L \eta \text{ then } [x_{1_q}, x_{2_q}] \leq_L [y_{1_q}, y_{2_q}] \text{ for all } q = 2..n.$ According to the fourth axiom of the definition 3.4 $Sp_f(\mu) \geq Sp_f(\eta)$.

Theorem 3.1 Let f be a transformation operator and $\{\alpha_i\}$ a set of weights that satisfies:

- $\alpha_i \in [0,1]$
- $\bullet \ \Sigma_{i=2}^n \alpha_j = 1$
- $\{\alpha_i\}$ is not increasing.

Let T, T', S and N be, two t-norms, a t-conorm and a negation (in $[0,1],\leq$) respectively. Let $[x_{1_q},x_{2_q}]$ be the f-list of an interval-valued fuzzy set μ . Then, the next expression is a f-measure of specificity for intervalvalued fuzzy sets:

$$Sp_f(\mu) = T(f(x_{1_1}, x_{2_1}), N(S(T'(\alpha_2, f(x_{1_2}, x_{2_2}))), ..., T(\alpha_n, f(x_{1_n}, x_{2_n}))))$$

This expression is a generalization of the t-norm based measure of specificity given in [3] but extended for IVFS.

Proof

- 1. $Sp_f(\mu) = 1$ if and only if μ is a singleton:
 - If μ is a singleton then $[x_{1_1}, x_{2_1}] = [1, 1]$ and $[x_{1_k}, x_{2_k}] = [0, 0]$ for all k > 1. Then $f(x_1, x_2)_1 = 1$ and $f(x_1, x_2)_k = 0$ for all
 - If $Sp_f(\mu) = 1$, it is necessary that $f(x_1, x_2)_1 = 1$ and

$$S(T(\alpha_2, f(x_1, x_2)_2)), ..., T(\alpha_n, f(x_1, x_2)_n) = 0$$

Then $T(\alpha_k, f(x_1, x_2)_k) = 0$ for all k and $f(x_1, x_2)_k = 0$ for all k.

- 2. $Sp_f(\emptyset) = 0$: trivial.
- 3. Trivial due to the fact T, T' and S are monotonic.

Example 3.1 With $T(a, b) = Max\{0, a + b - 1\}$, N(a) = 1 - a, $S(a,b) = Min\{1, a+b\},\$ T'(a,b) = a * b and $f(x,y) = \frac{x+y}{2}$, it is obtained:

$$Sp(\mu) = \frac{1}{2}(x_{1_1} + x_{2_1}) - \sum_{j=2}^{n} \alpha_j(x_{1_j} + x_{2_j})$$

Example 3.2 With $T(a, b) = Max\{0, a + b - 1\}$, N(a) = 1 - a, $S(a,b) = Min\{1, a+b\},\$ $T'(a,b) = a*b \text{ and } f(x,y) = \alpha*x+\beta*y \text{ with } \alpha+\beta=1,$ it is obtained:

$$Sp(\mu) = \alpha * x_{1_1} + \beta * x_{2_1} - \sum_{j=2}^{n} \alpha_j (\alpha * x_{1_j} + \beta * x_{2_j})$$

Example 3.3 With $T(a,b) = Max\{0, a+b-1\}$, N(a) = 1 - a, $S(a,b) = Min\{1, a+b\},\$ T'(a,b) = a * b and f(x,y) = x * y, it is obtained:

$$Sp(\mu) = x_{1_1} * x_{2_1} - \sum_{k>1} \alpha_k * x_{1_k} * x_{2_k}$$

Those examples 3.1, 3.2 and 3.3 are extensions of R. Yager's linear measure of specificity [11] for \mathcal{IVFS} .

Conclusions and future work

An approach of measures of specificity of interval-Valued fuzzy sets is given. it is based on the R. Yagers concept of measure of specificity as a measure of in- $Sp_f(\mu) = T(f(x_{1_1}, x_{2_1}), N(S(T'(\alpha_2, f(x_{1_2}, x_{2_2}))), ..., T(\alpha_n, f(x_{1_n}, x_{2_n}))))) \\ \text{ formation that evaluates a degree of useful lness of insertion}$ formation contained on a fuzzy set in order to make a decision.

> A general expression of measures of specificity of interval-Valued fuzzy sets is given using t-norms, tconorms a negation and a new proposed transformation operator in its definition, and some examples of

this expression are provided using different connectives and different transformation operators.

Acknowledgements

This research is partially supported by the Spanish Ministry of Science and Technology, grant number TIN2009-07901, the Research Group CAM GR58/08 at Complutense University of Madrid.

References

- [1] C. Cornelis, G. Deschrijver, and E. Kerre. Advances and challenges in interval-valued fuzzy logic. Fuzzy Sets and Systems, 157(5):622–627, 2006.
- [2] C. Cornelis, G.Deschrijver, and E. Kerre. Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application. *Int. J. Approx. Reasoning*, 35(1):55–95, 2004.
- [3] L. Garmendia, R.R. Yager, E. Trillas and A. Salvador. On t-norms based specificity measures. *Fuzzy Sets and Systems*, 133(2):237–248, 2003.
- [4] L. Garmendia, R.R. Yager, E. Trillas and A. Salvador. General measures of specificity of fuzzy sets under t-indistinguishabilities. *IEEE Transactions on Fuzzy Systems*, 14(4):568–572, 2006.
- [5] L. Garmendia, R.R. Yager, E. Trillas and A. Salvador. A t-norm based specificity for fuzzy sets on compact domains. *International Journal of Gen*eral Systems, 35(6):687–698, 2006.
- [6] R. González del Campo and L. Garmendia. Specificity, uncertainty and entropy measures of interval-valued fuzzy sets. Proceedings EURO-FUSE Workshop Preference Modelling and Decision Analysis, pages 273–278, 2009.
- [7] I. Grattan-Guiness. Fuzzy membership mapped onto interval and many-valued quantities. Math. Logik. Grundladen Math, 22:149–160, 1975.
- [8] K.U. Jahn. Intervall-wertige Mengen. Math. Nach., 68:115–132, 1975.
- [9] E. Sanchez and R. Sambuc. Fuzzy relationships. phi-fuzzy functions. application to diagnostic aid in thyroid pathology. Proceedings of an International Symposium on Medical Data Processing, pages 513–524, 1976.
- [10] R.R. Yager. Measuring tranquility and anxiety in decision-making - an application of fuzzy-sets. *International Journal of General Systems*, 8:139– 146, 1982.

- [11] R.R. Yager. Ordinal measures of specificity. *International Journal of General Systems*, 17:57–72, 1990.
- [12] L.A. Zadeh. The concept of a linguistic variable and its application to approximate reasoning i. *Information Sciences*, 8:199–249, 1975.