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Abstract

When comparing categorical values, tradi-
tional approaches use metrics based only
on the matching of the values, obtaining a
Boolean result. In this paper, it is proposed
to use a measure able to compute the degree
of semantic similarity between a pair of terms
using an ontology as background knowledge.
The presented measure - the Superconcept-
based distance - have two main advantages
over other approaches based on the exploita-
tion of the hierarchical model of ontologies:
on one hand, it takes into account the whole
hierarchy of concepts in the ontology to as-
sess the similarity between a pair of words;
on the other hand, this paper proves that
this measure fulfills the distance properties.
As the paper also reviews, the usual seman-
tic similarity measures used in the literature
does not fulfill the triangle inequality, which
prevents them from being used in some deci-
sion making methods.

Keywords: Semantic similarity, ontologies,
linguistic terms, distance properties.

1 INTRODUCTION

Our work is focused on decision making problems that
have to deal with variables that take their values in
a list of linguistic terms. Differently from categorical
variables that have a predefined domain of terms (i.e.
modalities), we are facing the case of having a non
fixed and large set of possible values. Moreover, no
ordering or measurement scale in the values is defined,
as traditional linguistic variables do. An example of
this type of variables can be languages or hobbies.

Traditionally, the comparison between two values in
categorical variables is done simply based on the equal-
ity/inequality of the words, due to the lack of proper
methods for representing the meaning of the terms.
Some widely used distance measures for categorical
values are the Chi-Squared and the Hamming distance
[16]. However, from a semantic point of view, it is pos-
sible to establish different degrees of similarity between
values (i.e. Italian is more similar to French than to
Chinese). Each of these terms is in fact describing a
concept, thus, reasoning at a conceptual level should
be done in order to calculate an approximation of the
similarity.

The computation of the semantic similarity between
concepts is an active trend in computational linguis-
tics. The similarity between a pair of concepts quan-
tifies how they are alike based on the estimation of se-
mantic evidence observed in some knowledge source.
Taxonomies and, more generally ontologies [13] are
considered as a graph model in which semantic rela-
tions are modeled as links between concepts. In the lit-
erature several semantic similarity measures have been
proposed. A brief review of those measures will be pre-
sented in section 2. In this paper we focus on measures
based on the exploitation of the taxonomic relations
in ontologies. These measures are based on the com-
putation of the minimum path length between a pair
of concepts to assess the semantic similarity. Conse-
quently, a lot of relevant information is missed because
the rest of taxonomic information is not considered.

To sort out this problem, in this paper a new mea-
sure is presented, which takes into account the com-
mon and not common ancestors (i.e. superconcepts) of
the two concepts compared. It is called Superconcept-
based Distance (SCD). When this comparison between
terms is done in the context of decision making, it is
worth to know the metrical properties of the measure,
because it may have implications on the results that
will be obtained. For example, for the particular case
of hierarchical clustering, it is interesting to maintain
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the ultrametric properties of the dendograms and the
Huygens theorem of decomposition of inertia, which
are directly related with the interpretability of the final
results. If the comparison measure is a distance, these
properties are guaranteed [3]. However, in the field
of computational linguistics, the comparison measures
proposed usually do not fulfill the triangle inequality
property, being only similarities but not distances. In
this field, this is not a handicap. As noted by Tver-
sky [14], the triangle inequality property is not always
achievable when dealing with linguistic descriptions.

The goal of this paper is to study the Superconcept-
based measure and analyze its metrical properties,
proving that it is a distance. Since most of the clas-
sical semantic similarity measures are not distances,
this is an interesting result that may help to extend
the use of this similarity assessment not only to text
mining but also to other fields, specially to intelligent
decision support systems.

The paper is organized as follows. Section 2 reviews
the existing semantic similarity measures based on on-
tologies. Section 3 defines the Superconcept-based
Distance. Section 4 shows the good performance re-
sults of this measure. Section 5 proves the distance
properties of SCD. Discussion and future work are in
section 6.

2 RELATED WORK

In the literature, we can found several different ap-
proaches to compute semantic similarity between con-
cepts according to the techniques employed and the
knowledge exploited. There are approaches in which
the degree of co-occurrence between terms in a given
corpus is used as an estimation of similarity [7]. These
measures need a corpus as general as possible in order
to estimate social-scale word usage. However, due to
the lack of domain coverage of a general domain corpus
and the difficulty of compiling a relevant domain cor-
pus big enough to obtain robust statistics, they offer
a limited performance.

Similarity computation can be also based on struc-
tured representations of knowledge, typically, sub-
sumption hierarchies. The evolution of those hierar-
chies have given the origin to ontologies in which many
types of relationships and logical descriptions can be
specified to formalize knowledge [9].

Some approaches combine the knowledge provided by
an ontology with the Information Content (IC) of the
concepts that are being compared. IC measures the
amount of information provided by a given term from
its probability of appearance in a corpus. Based on
this premise, Resnik [11] proposed to estimate the sim-

ilarity between two terms as the amount of information
they share in common. In a taxonomy, this informa-
tion is represented by the Least Common Subsumer
(LCS) of both terms. So, the computation of the IC
of the LCS results is used to estimate the similarity
of the subsumed terms. The more specific the sub-
sumer is (higher IC), the more similar the subsumed
terms are. Several variations of this measure have been
developed [5]. However, those measures are affected
by the availability of the background corpus and their
coverage with respect to the evaluated terms.

Other approaches consider ontologies as a graph model
in which semantic interrelations are modeled as links
between concepts. These measures compute concept
similarity as inter-link distance in the taxonomic struc-
ture (also called Path Length) [10].

simpL(c1,c2)=min # of is−a edges connecting c1 and c2 (1)

Several variations of this measure have been devel-
oped such as the one proposed by Wu and Palmer
[15]. Their proposal also takes into account the depth
of the concepts in the hierarchy (2). Here, N1 and N2

is the number of is-a links from c1 and c2 respectively
to the LCS c, and N3 is the number of is-a links from
c to the root ρ of the ontology.

simw&p(c1, c2) =
2 ∗ N3

N1 + N2 + 2 ∗ N3
(2)

Leacock and Chodorow [6] proposed a measure that
considers both the number of nodes Np from c1 to c2,
and the depth D of the taxonomy in which they occur
(3).

siml&c(c1, c2) = − log Np/2D (3)

However, those measures based on Path Length only
consider the minimum path between a pair of concepts,
omitting the rest of the taxonomic knowledge available
in the ontology, wasting a great amount of relevant
knowledge.

3 SUPERCONCEPT BASED
DISTANCE

The Superconcept-based Distance (SBC) has been de-
signed to overcome the limitations of the other Path
Length approaches, explained in the previous section.
This measure takes into account both the amount of
overlapping and non-overlapping taxonomical knowl-
edge between concepts. To do this, the distance con-
siders the number of shared superconcepts (upper con-
cepts of a concept in the taxonomy) and the number
of non shared superconcepts.

Considering that an ontology O as an object model
composed by a set of concepts or classes C, which are
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taxonomically related by the transitive is-a relation
Hc ∈ C × C, called concept hierarchy or taxonomy,
and non-taxonomically related by named object rela-
tions R∗ ∈ C × C× String, the Superconcept-based
Distance is defined as:

Definition: Superconcept-based Distance (SCD)

dSCD(ci, cj) =
√

|A(ci)∪A(cj)|−|A(ci)∩A(cj)|
|A(ci)∪A(cj)|

(4)

where A(ci) = {cj ∈ C|cj is superconcept of ci ∈
HC ∨ ci = cj}.

The numerator of expression (4) calculates the number
of non-common ancestors of the two concepts, ci and
cj . That is, the amount of non-shared information.
The denominator is used to consider the proportion of
non-common superconcepts with respect to the total
number of superconcepts. In this way, the measure is
able to distinguish between cases in which the number
of common superconcepts between a pair of concepts
is small from those cases in which the number of com-
mon superconcepts is high. Less shared superconcepts
means a greater distance. The squared root is used to
smooth the result as the amount of common informa-
tion is not linear in relation to similarity [7].

4 EVALUATION

The most common way of evaluating similarity mea-
sures is by using a set of word pairs whose similarity
has been assessed by a group of human experts and cal-
culate the correlation between the human ratings and
the results of the computerized measures. The most
commonly used benchmarks are the one proposed by
Miller and Charles [8], which is a set of 30 domain-
independent word pairs chosen from their hight, mid-
dle and low level of synonymy from an experiment
done by Rubenstein and Goodenough [12], and the
one proposed by Resnik [11]. Resnik replicated the
experiment of Miller and Charles in order to obtain
more accurate ratings by giving a group of experts the
same set of noun pairs. Resnik computed how well the
rating of the subjects in his evaluation correlated with
Miller and Charles ratings. The average correlation
over the 10 subjects (considered by Resnik) was 0.884.
This value is considered the upper bound to what one
could expect from a machine computation on the same
task [11]. In order to evaluate the measure presented,
we used these benchmarks and WordNet[4] as back-
ground ontology (Table 1).

The results show that Leacock & Chodorow and Wu
& Palmer approaches clearly outperform Path Length
measure. The reason is that these measures take
into account more information of the taxonomy as the

Table 1: Correlations obtained for each measure using
domain independent benchmarks

Measure Resnik M&C Rubenstain
Path Length 0.670 0.638 0.737
Wu&Palmer 0.804 0.795 0.801
Leacock&Chodorow 0.829 0.779 0.838
SCD 0.839 0.807 0.839

depth of the ontology (Leacock and Chodorow’s pro-
posal) or the the depth of the LCS and the relative
depth between compared concepts and the LCS (Wu
and Palmer). Our measure (SCD) considers the whole
set of superconcepts of the pair of compared concepts.
It can be seen that our proposal provides the high-
est correlation regarding expert’s judgments. Notice
that for the Resnik benchmark, with SCD measure we
are approaching the upper bound (0.884) to what one
could expect from a machine computation.

The distance had been also evaluated for the biomed-
ical domain using a benchmark referring to medical
disorders and SNOMED-CT terminology [1]. In this
study, SCD also obtained the best performance results.

5 PROOF OF THE DISTANCE
PROPERTIES

The properties that a distance measure must fulfill are
the following ones:

1. Identity: d(ci, cj) = 0 ⇐⇒ ci = cj ,∀i, j

2. Symmetry: d(ci, cj) = d(cj , ci), ∀i, j

3. Triangle inequality: d(ci, cj) + d(cj , ck) ≥
d(ci, ck), ∀i, j, k

The proofs of the Identity and Symmetry are straight-
forward. The Identity is fulfilled because iff two con-
cepts are the same, the union of all the ancestors is
equal to the set of common ancestors (i.e. intersec-
tion), which leads to a 0 at the numerator of eq. 4.
Symmetry also holds because the union and intersec-
tion operators are symmetric.

So, in this section we concentrate on the proof of the
the triangle inequality property. First some notation is
introduced to simplify the formulation of the problem.

Let:

A = A(c1), B = A(c2), C = A(c3)

Then, the triangle inequality property is expressed as:

|A∪B|−|A∩B|

|A∪B|
+

|B∪C|−|B∩C|

|B∪C|
≥

|A∪C|−|A∩C|

|A∪C|
(5)
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Proposition 1. In a taxonomic relation without mul-
tiple inheritance, this property holds:

A ∩ B = B ∩ C or A ∩ B = A ∩ C or B ∩ C = A ∩ C

Proof. Assuming that proposition 1 is not true, the
following conditions must be true simultaneously:

1. A ∩ B 6= B ∩ C ⇒ (1.a) ∃cx ∈ A ∩ B, cx /∈ B ∩ C

or (1.b) ∃cx /∈ A ∩ B, cx ∈ B ∩ C

2. A ∩ B 6= A ∩ C ⇒ (2.a) ∃cy ∈ A ∩ B, cy /∈ A ∩ C

or (2.b) ∃cy /∈ A ∩ B, cy ∈ A ∩ C

3. B ∩ C 6= A ∩ C ⇒ (3.a) ∃cz ∈ A ∩ C, cz /∈ B ∩ C

or (3.b) ∃cz /∈ A ∩ C, cz ∈ B ∩ C

These six possible cases are graphically represented in
figure 1.

c3

cx

c2c1

(a) Case 1.a

c1

cx

c3c2

(b) Case 1.b

c3

c1 c2

cy

(c) Case 2.a

c2

c1 c3

cy

(d) Case 2.b

c2

c1 c3

cz

(e) Case 3.a

c1

cz

c3c2

(f) Case 3.b

Figure 1: Intersection cases

From these figures, it is easy to see that:

If expr. 1.a = true ⇒ B ∩ C = A ∩ C (Fig. 1(a))

If expr. 1.b = true ⇒ A ∩ B = A ∩ C (Fig. 1(b))

If expr. 2.a = true ⇒ B ∩ C = A ∩ C (Fig. 1(c))

If expr. 2.b = true ⇒ A ∩ B = B ∩ C (Fig. 1(d))

If expr. 3.a = true ⇒ A ∩ B = B ∩ C (Fig. 1(e))

If expr. 3.b = true ⇒ A ∩ B = A ∩ C (Fig. 1(f))

Proof. Triangle inequality.

For simplicity, let us rename the sets of union and
intersection as follows:

x = |A ∪ B| and p = |A ∩ B| with 1 ≤ p ≤ x

y = |B ∪ C| and q = |B ∩ C| with 1 ≤ q ≤ y

z = |A ∪ C| and r = |A ∩ C| with 1 ≤ r ≤ z

Notice that p = 1 iff A∩B =root node of the ontology,
q = 1 iff B∩C =root node of the ontology and r = 1 iff
A ∩ C =root node of the ontology. In addition, p = x

iff c1 = c2, q = x iff c2 = c3 and r = x iff c1 = c3.

So the triangle inequality can be expressed as:

√
x − p

x
+

√
y − q

y
≥

√
z − r

z

, that is:

√
(x − p)yz
√

xyz
+

√
(y − q)xz
√

xyz
≥

√
(z − r)xy
√

xyz

This is equivalent to demonstrate:

√
xyz − pyz +

√
xyz − xqz ≥

√
xyz − xyr (6)

Let us prove eq.6 in the three cases of Proposition 1.

1. If A ∩ B = B ∩ C ⇒ p = q and p ≤ r

√
xyz − pyz +

√
xyz − xpz ≥

√
xyz − xyr

(
√

xyz − pyz +
√

xyz − xpz)2 ≥ (
√

xyz − xyr)2

xyz+xyr−pz(x+y)+2
√

xyz − pyz
√

xyz − xpz ≥ 0

In this case we can rewrite x, y and z as:

x = a + b + p

y = b + c + p

z = a − (r − p) + c − (r − p) + r

= a + 2p + c − r

,where a = |A|−p, b = |B|−p, and c = |C|−p. So,
a, b, c are the number of superconcepts of A, B,
C, respectively, that not belong to A ∩ B. Then,

a2b + 4abp + 2abc − abr + a2c + 4acp + ac2

− acr + a2p + 3ap2 − apr + b2a + 2b2p + b2c

− b2r + 4bcp + bc2 − bcr + 4bp2 − 2bpr + 3cp2

+ c2p − cpr + 2p3 − p2r + abr + acr + apr

+ b2r + bcr + 2bpr + cpr + p2r − a2p − 2abp

− 4ap2 − 2acp − 4bp2 − 4p3 − 4cp2 − 2bcp

− c2p + apr + 2bpr + 2p2r + cpr

+ 2
√

xyz − pyz
√

xyz − xpz ≥ 0

Having that p ≤ r (the number of concepts of
A∩B is less or equal than the number of concepts
of A ∩ C) and p ≤ x (the number of concepts of
A∩B is less or equal than the number of concepts
of A ∪ B) and p ≤ y (the number of concepts of
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B ∩ C is less than number of concepts of B ∪ C),
we can determine the positivity of the pairs:

a2b + 2abp + 2abc + a2c + 2acp + ac2

+ b2a + 2b2p + b2c + 2bcp + bc2

+ 2p2r − 2p3

︸ ︷︷ ︸
≥0

+ apr − ap2

︸ ︷︷ ︸
≥0

+ cpr − cp2

︸ ︷︷ ︸
≥0

+2bpr

+ 2
√

xyz − pyz
︸ ︷︷ ︸

≥0

√
xyz − xpz
︸ ︷︷ ︸

≥0

≥ 0

So, triangle inequality holds when A∩B = B∩C.

2. If A ∩ B = A ∩ C ⇒ p = r and p ≤ q
√

xyz − pyz +
√

xyz − xqz ≥
√

xyz − xyp

xyz+yp(x−z)−xqz+2
√

xyz − pyz
√

xyz − xqz ≥ 0

In this case we can rewrite x, y and z as:

x = a + b + p

y = b − (q − p) + c − (q − p) + q

= b + 2p + c − q

z = a + c + p

,where a = |A| − p, b = |B| − p, and c = |C| − p.
Then,

a2b + 2a2p + a2c − a2q + 2abc + 4acp

+ ac2 − acq + 4abp + 4ap2 − 2apq + ab2

− abq + b2c + 4bcp + bc2 − bcq + b2p + 3bp2

− bpq + 3cp2 + c2p − cpq + 2p3 − p2q + b2p

+ 2bp2 − 2cp2 − c2p − bpq + cpq − a2q − acq

− 2apq − abq − bcq − bpq − cpq − p2q

+ 2
√

xyz − pyz
√

xyz − xqz ≥ 0

In this case, the number of superconcepts of c2

and c3 are greater or equal than |B ∩ C|, so we
have that q ≤ c + p and q ≤ b + p. In addition,
we have that p ≤ x and q ≤ y. So:

a2p + a2b − a2q
︸ ︷︷ ︸

≥0

+ a2p + a2c − a2q
︸ ︷︷ ︸

≥0

+ acp + ac2 − acq
︸ ︷︷ ︸

≥0

+ acp + abc − acq
︸ ︷︷ ︸

≥0

+ 2ap2 + 2acp − 2apq
︸ ︷︷ ︸

≥0

+ 2ap2 + 2abp − 2apq
︸ ︷︷ ︸

≥0

+ abp + ab2 − abq
︸ ︷︷ ︸

≥0

+ abp + abc − abq
︸ ︷︷ ︸

≥0

+ bcp + b2c − bcq
︸ ︷︷ ︸

≥0

+ bcp + bc2 − bcq
︸ ︷︷ ︸

≥0

+ 2bp2 + 2b2p − 2bpq
︸ ︷︷ ︸

≥0

+ bp2 + bcp − bpq
︸ ︷︷ ︸

≥0

+ 2p3 + 2bp2 − 2p2q
︸ ︷︷ ︸

≥0

+ cp2 + bcp2 − cpq
︸ ︷︷ ︸

≥0

+ 2
√

xyz − pyz
︸ ︷︷ ︸

≥0

√
xyz − xqz
︸ ︷︷ ︸

≥0

≥ 0

So, the triangle inequality is demonstrated when
A ∩ B = A ∩ C.

3. If B ∩ C = A ∩ C ⇒ q = r and q ≤ p

√
xyz − pyz +

√
xyz − xqz ≥

√
xyz − xyq

xyz+xq(y−z)−pyz+2
√

xyz − pyz
√

xyz − xqz ≥ 0

In this case we can rewrite x, y and z as:

x = a − (p − q) + b − (p − q) + p =

= a + b + 2q − p

y = b + c + q

z = a + c + q

,where a = |A| − p, b = |B| − p, and c = |C| − p

and q ≤ p. And having that p ≤ a + q, p ≤ b + q,
p ≤ x and q ≤ y:

a2b + abq − abp
︸ ︷︷ ︸

≥0

+ ab2 + abq − abp
︸ ︷︷ ︸

≥0

+ abc + bcq − bcq
︸ ︷︷ ︸

≥0

+ b2c + bcq − bcp
︸ ︷︷ ︸

≥0

+ 2b2q + 2bq2 − 2bqp
︸ ︷︷ ︸

≥0

+ abq + bq2 − bqp
︸ ︷︷ ︸

≥0

+ a2c + acq − acp
︸ ︷︷ ︸

≥0

+ abc + acq − acp
︸ ︷︷ ︸

≥0

+ ac2 + c2q − c2p
︸ ︷︷ ︸

≥0

+ bc2 + c2q − c2p
︸ ︷︷ ︸

≥0

+ 2acq + 2cq2 − 2cqp
︸ ︷︷ ︸

≥0

+ 2bcq2 + 2cq2 − 2cqp
︸ ︷︷ ︸

≥0

+ abq + aq2 − aqp
︸ ︷︷ ︸

≥0

+ 2bq2 + 2q3 − 2q2p
︸ ︷︷ ︸

≥0

+ 2
√

xyz − pyz
︸ ︷︷ ︸

≥0

√
xyz − xqz
︸ ︷︷ ︸

≥0

≥ 0

Finally, the triangle inequality is demonstrated when
B ∩ C = A ∩ C.

6 DISCUSSION AND FUTURE
WORK

This paper proposes the use of semantic-based simi-
larity measures for the comparison on linguistic terms
in decision making. In particular, the measures based
on the exploitation of the taxonomic relations in an
ontology have been reviewed. The main drawbacks of
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these measures are that they only exploit the minimum
path length between a pair of concepts of an ontology,
wasting the rest of taxonomic relations, and that they
do not hold the triangle inequality property.

In this paper, the SCD measure that takes into ac-
count the ratio between the shared and non-shared
taxonomically related concepts of the compared pair
of concepts is analyzed. As shown in the evaluation,
our proposal outperforms previous attempts, exploit-
ing the taxonomical structure of WordNet.

The paper proves that SCD measure fulfils the metric
properties, which means that is suitable to be used in
some applications, such as in hierarchical clustering.

In fact, an approximation using semantic measures
based on ontologies to make clustering was studied in
[2]. In that work, it was demonstrated that the clus-
ters obtained using these measures are more accurate
and interpretable.

As future work, we plan to evaluate the SCD measure
with some domain ontologies and using other domain
dependent benchmarks, which it will be interesting in
order to evaluate the dependency of the results in rela-
tion to the ontology coverage. We also plan to extend
the use of this semantic-based comparison of terms to
other decision making methods.
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