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Abstract

Logistics planning is an area which offers
many opportunities to study optimization
problems such as route planning. These
problems can be modeled according to the
standard forms seen in vehicle route prob-
lems. One of the most common objectives
in these kinds of problems is to minimize the
time to cover the vehicle routes. In many real
life situations the values for time can not be
obtained in a precise way. In this article we
propose a methodological approximation to
obtain solutions to the vehicle route problem
when the objective function is expressed in
terms of fuzzy times.

Keywords: Vehicle route problems, fuzzy
Optimization, Metaheuristics.

1 INTRODUCTION

Route distribution planning problems play a key role
in supply chain management and especially in logis-
tical systems. Proper planning can help improve the
effectiveness and efficiency in these systems. Route
planning problems in the present day context of the
global economy have an important associated impact
beside the obvious transport costs. They also affect
the efficient use of resources, added value in service
benefits and client satisfaction.

A traditional objective of these product distribution
problems from a depot to a set of geographically dis-
perse nodes is to determine the set of routes for the
available vehicles that minimize total operating costs
of the fleet, satisfying some, but not all, constraints.
These problems have been studied under varied ap-
proaches and many different results have been ob-

tained through the formulation of vehicle route prob-
lems (VRP). The VRP is concerned with finding an
optimal set of routes that begin and end in a depot for
a specified fleet of vehicles that satisfy client demand
(see Cordeau et al. [4]). Client, depot and vehicle
characteristics, in addition to different route operating
restrictions, offer different variations to the problem.

The two lines of research we wish to highlight provide
solutions to the models that increasingly account for
those characteristics observed in real cases and those
that specifically seek more effective procedures to solve
these problems.

Apart from the clearly practical aspects of this prob-
lem, the formal, academic study of the combinatorial
optimization aspects of the problem are noteworthy.
They are, for the most part, NP hard problems and it
is not possible to find exact procedures and algorithms
that solve large instances of the problem in polynomial
time. It is there where the relevance of the utilized
heuristic methods is acquired, specifically in general
search strategies that carry out a limited or intensive
study of the solution space and where reasonable qual-
ity solutions are produced with modest computation
times.

In many typical vehicle route planning problems it is
not always possible to have access to all of the nec-
essary information, consequently leaving a problem
characterized by incomplete or imprecise information
of the problem parameters and variables. One of the
current approaches in the modeling and resolution of
problems containing uncertainty is found in an area
known as Soft Computing and in the Theory of Fuzzy
Sets (Zadeh, 1965). These approaches are used to con-
struct computation systems that solve decision and op-
timization problems and where the modeling is diffi-
cult to define with precision, managing vagueness and
the imprecision of available information, in addition to
the formulation of preferences, constraints and objec-
tives expressed by the decision makers[1].
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In this paper we deal with the problem in which travel
times required by a vehicle to go from one demand
node to another is imprecise. Traffic and road condi-
tions cause difficulties in the calculation of exact travel
times. A great amount of uncertainty is present in the
calculation of the travel times, for instance the day
of the week or the time of day that a vehicle travels
or other specific circumstances, such as traffic density
and the speed at which the vehicle moves in roads and
highways can be more or less distinct. On the other
hand, in route planning, the travel time of the routes
is usually one of the criteria to measure costs of the
available fleet of vehicles and the efficient use of that
fleet. Thus, in order to model the vehicle route prob-
lem, find solutions and evaluate the best ones, we use
an objective function that is expressed in terms of du-
ration times of the routes.

In this situation we consider the classic model of the
VRP, known as the capacitated vehicle route problem
(CVRP), where the coefficients of the objective func-
tion are imprecise, and the set of constraints are known
exactly, even though the capacity of the vehicles is ho-
mogenous. To model this kind of imprecision in the
coefficients we can use fuzzy quantities, namely trian-
gular fuzzy numbers that can be expressed in terms of
known values, using the knowledge at hand, derived
from the expertise of the drivers of the vehicles or us-
ing the historic information provided by positioning
tools in the vehicles.

The objective of this paper is to formulate the problem
based on the factors mentioned earlier, and find a pro-
cedure that will allow optimal solutions to be found in
an efficient way. After introducing the problem and its
context in this section, the organization of the paper
is as follows. In section 2 we formulate the CVRP by
taking into account the conditions of uncertainty in
the travel times. In Section 3 we explain how we ap-
ply some models proposed in the literature to obtain
a solution to the combinatorial optimization problem
where there are fuzzy coefficients in the objective func-
tion. In section 4 we solve this model with an example,
using different heuristics, which generate satisfactory
solutions.

2 CAPACITATED VEHICLE
ROUTING PROBLEMS

The standard VRP (usually called capacitated VRP;
CVRP) calls for the determination of a set of m routes
whose total travel length is minimized such that: (a)
each customer is visited exactly once by one route, (b)
each route starts and ends at a single depot, and (c)
the total demand of the customers served by a route
does not exceed a given vehicle capacity Ck where qj

is the demand of a node j. Travel times and travel
costs are considered equivalent. If each vehicle i is
assigned to a route Ri, a feasible solution for VRP
is made up of a partition from nodes set V into m
routes R1, R2, ..., Rm and the corresponding permuta-
tions of Ri that specify client order along the routes.
A formulation of the VRP as Integer Linear Program-
ming problem can be described [6], and assumed that
the depot is the node 0 and n+1, n is the number
of customers to be served by m vehicles and the de-
cision variables are xk

ij ∈ {0, 1}, i = 0, 1, ..., n, j =
1, 2, ..., n + 1, k = 1, 2, ...,m, where xk

ij = 1 if vehi-
cle k travels from customer i to j and 0 otherwise. We
also consider the continuous variables rk

i , represent-
ing the load of vehicle k after visiting node i. If the
vehicle k goes from customer i to customer j (xk

ij = 1)
then rk

j = rk
i − qi.

In particular, objective function may be formulated as
follows:

min
m∑

k=1

n∑
i=0

n+1∑
j=1

ckijx
k
ij (1)

where ckij is the cost of travelling from customer i to
customer j by vehicle k. The total travel cost is an
objective function to be minimized and is expressed in
term of total time, then

min

 m∑
k=1

n∑
i=0

n+1∑
j=1

tkijx
k
ij +

m∑
k=1

n∑
i=0

n+1∑
j=1

uk
i x

k
ij

 (2)

where tkij denotes the time needed to go from customer
i to customer j and uk

i is the required time by vehi-
cle k to unload demand to customer i. The objective
function is to minimize the total travel time.

The CVRP has the follow constraints:

• Constraints ensuring that each customer is served
exactly once.

m∑
k=1

n∑
i=0

xk
ij = 1, j ∈ [1..n]

m∑
k=1

n+1∑
i=1

xk
ji = 1, j ∈ [1..n]

• Constraints ensuring that each vehicle is used no
more than once.

n∑
j=1

xk
0j = 1, k ∈ [1..m]

n∑
i=1

xk
in+1 = 1, k ∈ [1..m]
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• Constraints ensuring route continuity.

n∑
i=0

xk
ij −

n+1∑
i=1

xk
ji = 0, j ∈ [1..n], k ∈ [1..m]

• Constraints ensuring that the load of each vehicle
is not greater that its capacity.

rk
i + qj − rk

j ≤ Ck(1− xk
ij)

i ∈ [1..n], j ∈ [1..n], k ∈ [1..m]

qi ≤ rk
i ≤ Ck, i ∈ [0..n], k ∈ [1..m]

These constraints are an alternative set of con-
straints equivalent to the standard constraints
of capacity cuts and ensure, in addition to the
restriction of capacities, the connectivity of the
routes and the elimination of subtours.

• In addition the conditions for the variables:

xk
ij ∈ {0, 1}, rk

i ≥ 0,
i ∈ [0..n], j ∈ [1..n], k ∈ [1..m]

This formalization assumes that the decision-maker
has access to specific information on the components
that define the problem; that is, on objective func-
tions and constraints. However in a logistics context
the information of time travel is actually imprecise or
incomplete.

Thus, if we suppose that all parameters of the prob-
lems are crisp: demand qi , capacity Ck, unload time
uk

i , and available load rk
i , travel times tkij that can

be fuzzy, the traditional model becomes a Fuzzy op-
timization problem. Intuitively, when any of these
quantities are fuzzy numbers, the objective functions
become fuzzy as well. If these parameters are approx-
imately known, they can be represented by the fuzzy
numbers t̃kij , with their corresponding membership
functions. Then, for instance, the objective function
(1) and (2) can be expressed as:

min
m∑

k=1

n∑
i=0

n+1∑
j=1

c̃kijx
k
ij

and

min

 m∑
k=1

n∑
i=0

n+1∑
j=1

t̃kijx
k
ij +

m∑
k=1

n∑
i=0

n+1∑
j=1

uk
i x

k
ij

 (3)

The summation symbol Σ in the objective functions
and constraints refers to an addition of fuzzy numbers.
Hence there is a need to seek appropriate procedures
for its solution.

3 FUZZY OPTIMIZATION
PROBLEMS

An optimization problem can be described as the
search for the value of specific decision variables so
that identified objective functions attain their opti-
mum values. The value of the variables is subject to
stated constraints. In these problems the objective
functions are defined on a set of solutions that we will
denote by X. The objective function is not subject to
any condition or property nor is the definition of the
set X. Typically the number of elements of X is very
high, essentially eliminating the possibility of a com-
plete evaluation of all its solutions while determining
the optimal solution.

Optimization problems in their most general form in-
volve finding an optimal solution according to stated
criteria. In practice, however, many situations lack
the exact information that is needed in the problem,
including its constraints, or in other cases, where it
is unreasonable to access such specific constraints or
clearly defined objective functions. In these situations
it is advantageous to model and solve the problem us-
ing soft computing and fuzzy techniques.

Among all the optimization problems, the models that
have received the most attention and have offered the
most useful applications in different areas are Linear
Programming (LP) models, which is the single objec-
tive linear case with linear constraints. The classic
problem of LP is to find the maximum or minimum val-
ues of a linear function subject to constraints that are
represented by linear equations or inequalities. The
most general formulation of the LP problem is:

min Z = cx
subject to Ax ≤ b

x ≥ 0

The vector x = (x1, x2, ..., xn) ∈ <n represents the
decision variables. The objective function is denoted
by z, the numbers cj are coefficients and the vec-
tor c = (c1, c2, ..., cn) ∈ <n is known as the cost
vector. The matrix A = [aij ] ∈ <n×m is called
the constraint or technological matrix and the vector
b = (b1, b2, ..., bm) ∈ <m represents the independent
terms or right-hand-side of the constraints.

In many real situations not all the constraints and ob-
jective functions can be valued in a precise way. In
these situations we are dealing with the general prob-
lem form of Fuzzy Linear Programming (FLP). FLP
is characterized as follows: aij , bj and ci can be ex-
pressed as fuzzy numbers, xi as variables whose states
are fuzzy numbers, addition and multiplication op-
erates with fuzzy numbers, and the inequalities are
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among fuzzy numbers.

Different FLP models can be considered according to
the elements that contain imprecise information that
is taken as a basis for the classification proposed in
[2], [5]. In our case use a model with fuzzy costs as
objective function coefficients.

These models are those whose costs are not fully
known (with imprecision). Therefore, they are rep-
resented by an m-dimensional fuzzy vector cf =
(cf1 , c

f
2 , ..., c

f
n), and the following model:

min Z = cfx
subject to Ax ≤ b

x ≥ 0

Obviously, z is also a fuzzy number, but x can be a vec-
tor of fuzzy or non-fuzzy numbers, and each fuzzy cost
is described by its corresponding membership function
µi(x).

This model can be transformed into a simpler auxiliary
model following the approach proposed at [3], [7]. This
method proposed the use of an ordering function g
that allows the comparison between fuzzy numbers,
which facilitates minimizing the objective function. If
ũ and ṽ are two fuzzy numbers, ũ ≤ ṽ if g(ũ) ≤ g(ṽ).
In our problem we use the Yager third index as an
ordering function for triangular fuzzy numbers ũ =
Tr(u1, u2, u3) is g(ũ) = u1 + 2u2 + u3. Therefore the
objective function (3) can be replaced by:

min

 m∑
k=1

n∑
i=0

n+1∑
j=1

g(t̃kij)xk
ij +

m∑
k=1

n∑
i=0

n+1∑
j=1

g(uk
i )xk

ij


and using triangular fuzzy numbers and the Yager
third index, we obtain the following objective func-
tion:

min

 m∑
k=1

n∑
i=0

n+1∑
j=1

(t1k
ij x

k
ij + 2t2k

ij x
k
ij + t3k

ij x
k
ij)

+
m∑

k=1

n∑
i=0

n+1∑
j=1

4uk
i x

k
ij


where t̃kij is a triangular fuzzy number Tr(t1k

ij , t
2k
ij , t

3k
ij )

and uk
i is a crisp number equivalent to a triangular

fuzzy number Tr(uk
i , u

k
i , u

k
i ).

We use this fuzzy optimization approximation to solve
the problem formulation described earlier. In the next
section we provide specific examples.

Table 4: Results obtained
Heuristic Total Time route number
GRASP 1840 3

GRASP-LS 1840 3
VNS 1820 3

GRASP-VNS 1740 3

3.1 SOLUTIONS AND
EXPERIMENTATION

An evaluation of the formulation and the proposed
method is carried out using an example from Zheng
and Liu [8]. The proposed instances with triangu-
lar travel times in their paper include 18 customers,
labelled ”1”, ”2”,. . . , ”18”, a depot, labelled ’0’ and
vehicles with homogeneous capacity.

The amount of demand at each customer and the dis-
tances between customers (and the depot) are given in
Table 1. The travel times are triangular fuzzy num-
bers shown in Tables 2 and 3, with the time windows
of each customer. The unloading time at each loca-
tion is 15 minutes and the capacity of each of the four
available vehicles is 1000.

We have found solutions for the corresponding op-
timization problem using four heuristics: Greedy
Randomize Adaptive Search Procedure (GRASP),
GRASP with Local Search, a Variable Neighborhood
Search (VNS) and a GRASP-VNS Hybrid procedure.
The results were performed on a PC Intel CORE 2
Duo (2.26GHz) processors and 4GB RAM.

Table 4 presents the values of the best solutions ob-
tained in run time 60s for the objective function.

The best solutions was obtained using VNS and
GRASP-VNS hybrid heuristic in near 10min and con-
sist in the following three routes, respectively:

R1 : 0→ 2→ 1→ 3→ 6→ 4→ 7→ 10→ 0
R2 : 0→ 8→ 11→ 5→ 9→ 14→ 12→ 16→ 13→ 0
R3 : 0→ 15→ 18→ 17→ 0

The total time is T = 1700 and the loads of the vehicles
are 1000, 985 and 500.

R1 : 0→ 2→ 3→ 1→ 18→ 14→ 15→ 17→ 0
R2 : 0→ 10→ 11→ 7→ 9→ 6→ 5→ 13→ 16→ 0
R3 : 0→ 4→ 8→ 12→ 0

The total time is T = 1700 and the loads of the vehicles
are 1000, 990 and 495.
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Table 1: Demands (q) and distances (d) between customers.
d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 q
1 19.0 200
2 17.5 6.0 100
3 28.0 11.0 10.5 140
4 24.0 21.0 15.0 20.0 160
5 24.5 32.0 26.0 34.0 15.5 200
6 31.2 44.5 39.5 49.0 31.0 16.0 60
7 31.0 48.5 45.0 55.5 41.5 28.5 16.0 200
8 21.0 37.5 33.5 44.0 30.0 18.5 13.0 11.5 135
9 18.0 36.0 33.0 44.0 38.0 24.0 20.0 13.5 7.0 120
10 21.5 40.0 39.0 49.5 43.0 36.5 32.5 21.0 20.0 13.0 140
11 36.5 55.0 54.0 65.0 56.0 46.0 37.0 21.0 28.0 23.0 15.5 100
12 31.5 46.5 48.0 57.0 55.5 51.0 48.5 36.0 36.0 29.0 16.0 21.5 200
13 23.0 38.5 39.0 48.5 47.0 44.0 43.0 32.5 30.0 23.0 12.0 23.0 9.0 80
14 28.0 38.5 41.5 49.0 52.0 51.0 52.5 43.5 40.0 33.0 22.5 33.0 13.0 11.0 60
15 34.5 40.0 44.0 50.0 56.5 58.5 62.0 54.0 50.0 43.0 34.0 44.5 24.0 22.0 11.5 200
16 30.0 29.5 34.5 38.0 48.5 54.0 60.5 56.0 49.0 43.5 38.0 51.5 33.0 28.0 20.5 14.0 90
17 18.5 16.5 21.3 26.5 35.0 41.0 50.0 48.0 39.0 35.0 33.0 48.0 34.0 27.0 24.0 23.5 13.5 200
18 24.0 14.0 20.0 22.0 35.0 44.0 54.5 55.0 45.0 41.5 41.0 56.5 43.0 35.0 32.0 36.0 17.0 8.5 100

Table 2: fuzzy travel times between customers (part I).
T 0 1 2 3 4 5 6 7 8

1 (25,50,75)
2 (5,10,15) (20,40,60)
3 (25,50,75) (5,10,15) (20,40,60)
4 (7,15,23) (25,50,75) (7,15,23) (22,45,68)
5 (25,50,75) (17,35,53) (17,35,53) (15,30,45) (17,35,53)
6 (25,50,75) (7,15,23) (20,40,60) (2,5,8) (22,45,68) (15,30,45)
7 (12,25,38) (20,40,60) (15,30,45) (17,35,53) (7,15,23) (12,25,38) (17,35,53)
8 (7,15,23) (20,40,60) (5,10,15) (22,45,68) (10,20,30) (17,35,53) (20,40,60) (17,35,53)
9 (25,50,75) (7,15,23) (22,45,68) (5,10,15) (22,45,68) (15,30,45) (5,10,15) (20,40,60) (20,40,60)
10 (10,20,30) (22,45,68) (12,25,38) (22,45,68) (7,15,23) (15,30,45) (20,40,60) (5,10,15) (12,25,38)
11 (25,50,75) (5,10,15) (17,35,53) (15,30,45) (17,35,53) (5,10,15) (15,30,45) (5,10,15) (17,35,53)
12 (27,55,83) (17,35,53) (17,35,53) (15,30,45) (17,35,53) (2,5,8) (15,30,45) (7,15,23) (17,35,53)
13 (5,10,15) (20,40,60) (5,10,15) (20,40,60) (7,15,23) (15,30,45) (17,35,53) (17,35,53) (5,10,15)
14 (25,50,75) (5,10,15) (20,40,60) (2,5,8) (22,45,68) (15,30,45) (2,5,8) (17,35,53) (17,35,53)
15 (22,45,68) (5,10,15) (20,40,60) (5,10,15) (22,45,68) (15,30,45) (5,10,15) (17,35,53) (17,35,53)
16 (7,15,23) (22,45,68) (7,15,23) (22,45,68) (10,20,30) (15,30,45) (22,45,68) (17,35,53) (10,20,30)
17 (15,30,45) (20,40,60) (12,25,38) (20,40,60) (10,20,30) (12,25,38) (17,35,53) (2,5,8) (12,25,38)
18 (25,50,75) (5,10,15) (22,45,68) (5,10,15) (25,50,75) (15,30,45) (7,15,23) (17,35,53) (20,40,60)

4 CONCLUSIONS

Uncertainty needs to be managed in real logistic and
transportation systems. Fuzzy Logic systems have
been used to model the uncertainty. We consider the
CVRP with uncertainty in the travel times as trian-
gular fuzzy numbers. We propose a simple approxi-
mation to obtain optimal solutions for these problems
when fuzzy times are objective function coefficients.
We offer an approximation and an example in which
several heuristics are used to obtain solutions in short
periods of time. The best solution is obtained with
the GRASP-VNS hybrid procedure. These results in-
dicate new avenues of possible future research.
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