The Multidimensional Nucleon Structure

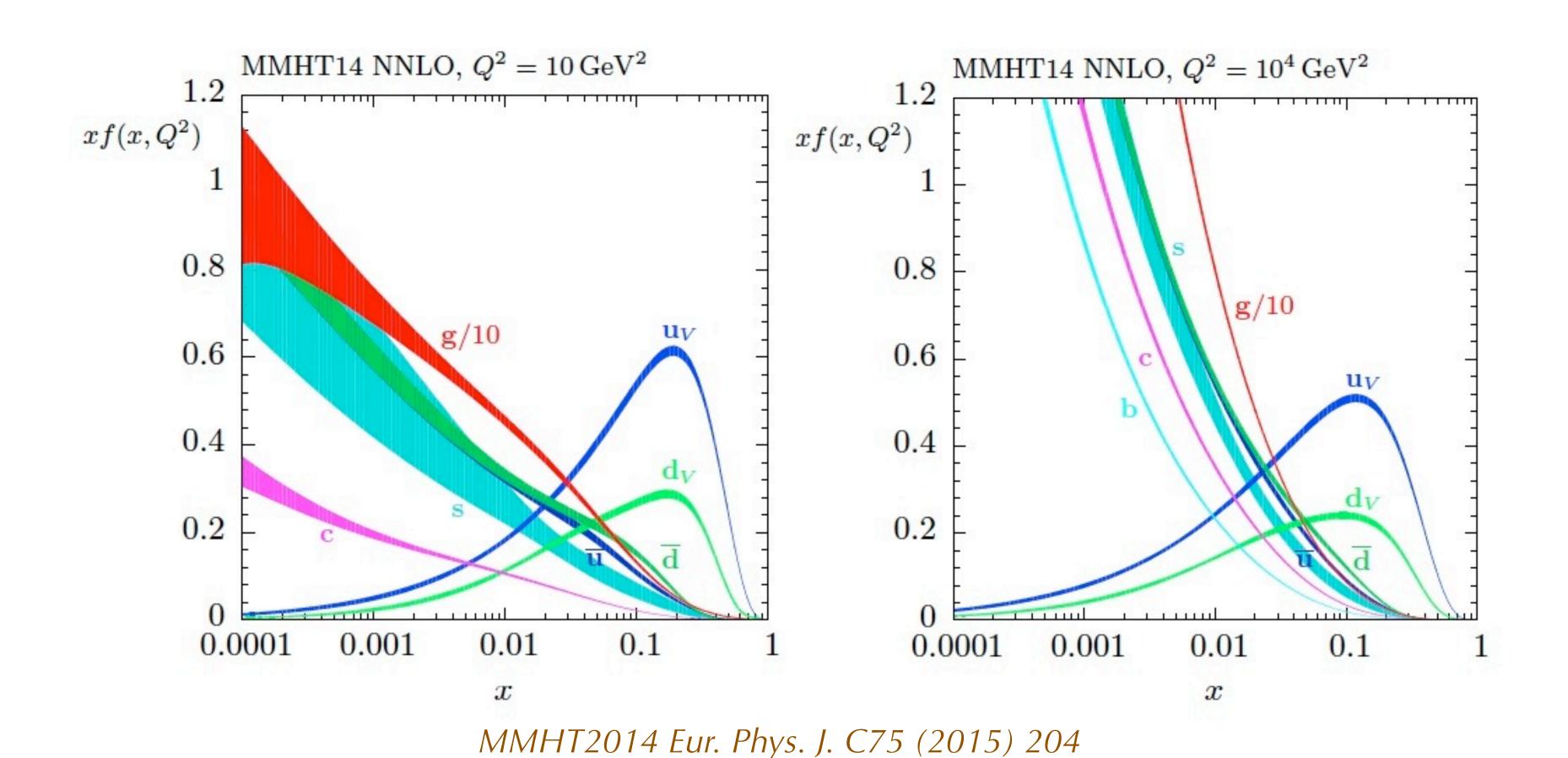
Barbara Pasquini

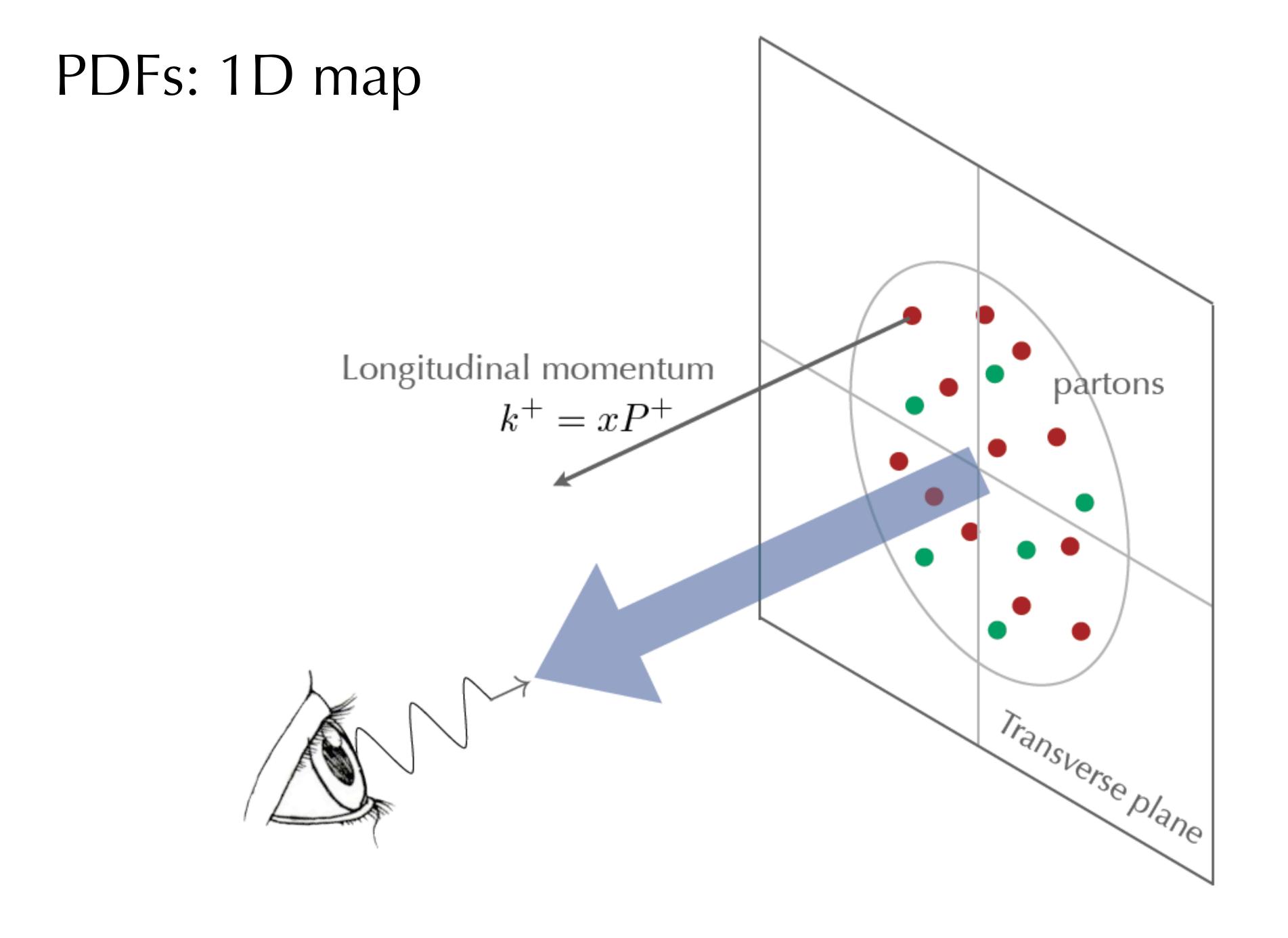
Università di Pavia & INFN

Funded by:

Principal Investigator: A. Bacchetta

Available Maps: Parton Distribution Functions monodimensional (in momentum space)

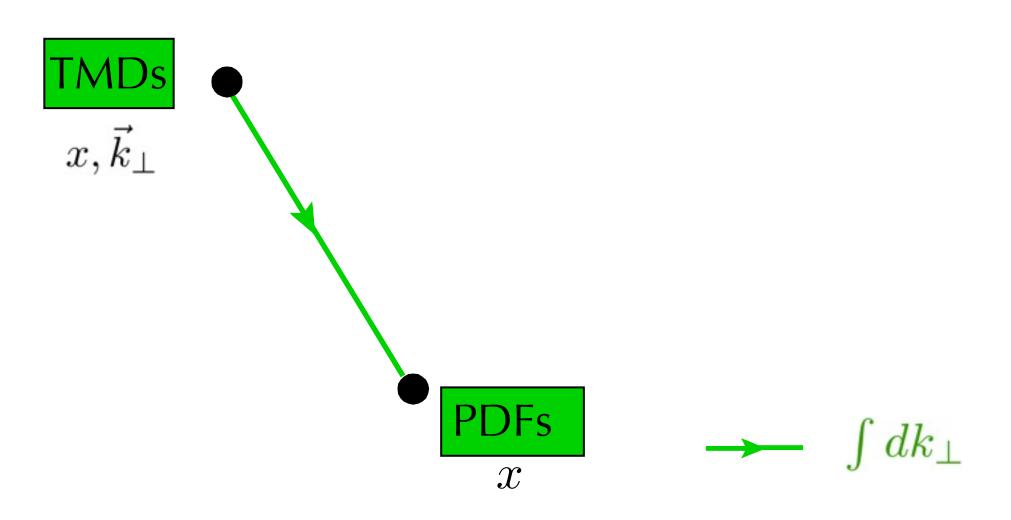




How can we built up a multidimensional picture of the nucleon?

Transverse Momentum PDFs (TMDs)

$$\frac{1}{2} \int \frac{\mathrm{d}z^{-} \mathrm{d}^{2} z_{\perp}}{(2\pi)^{3}} e^{ik \cdot z} \langle p^{+}, \vec{0}_{\perp}, \Lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W} \psi(\frac{z}{2}) | p^{+}, \vec{0}_{\perp}, \Lambda \rangle_{z^{+}=0}$$



Transverse Momentum PDFs (TMDs)

$$\frac{1}{2} \int \frac{\mathrm{d}z^{-} \mathrm{d}^{2} z_{\perp}}{(2\pi)^{3}} e^{ik \cdot z} \langle p^{+}, \vec{0}_{\perp}, \Lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W} \psi(\frac{z}{2}) | p^{+}, \vec{0}_{\perp}, \Lambda \rangle_{z^{+}=0}$$

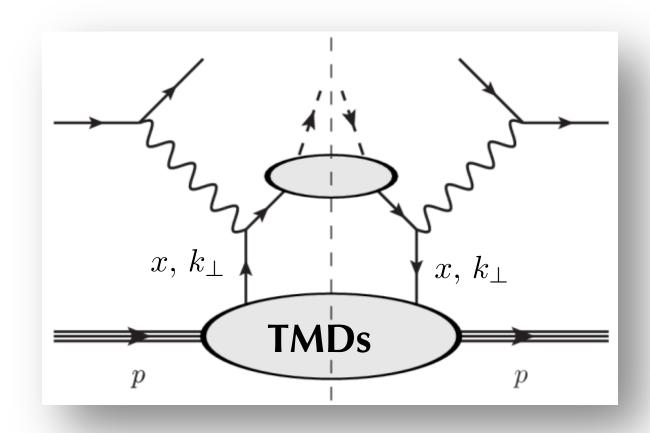
Depend on

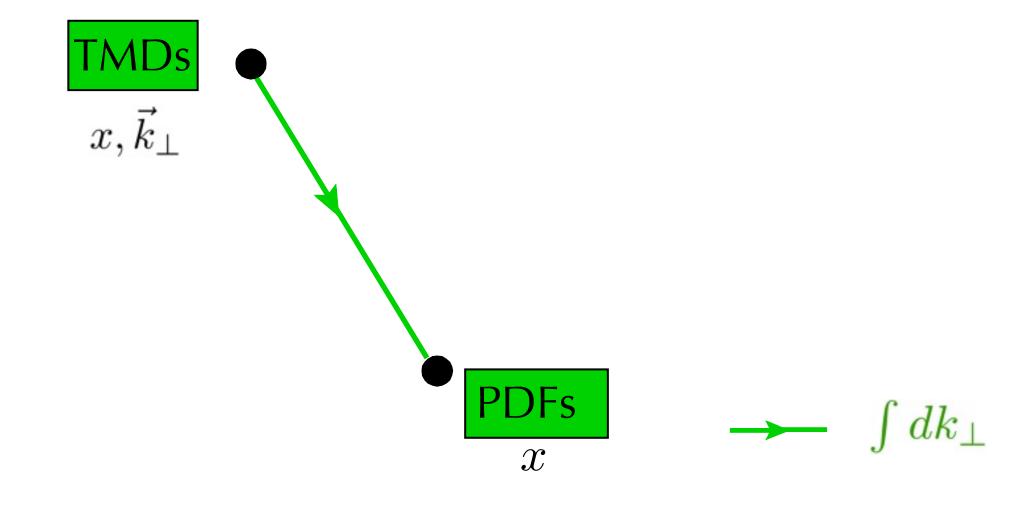
 $x = \frac{k^+}{P^+}$: longitudinal momentum fraction

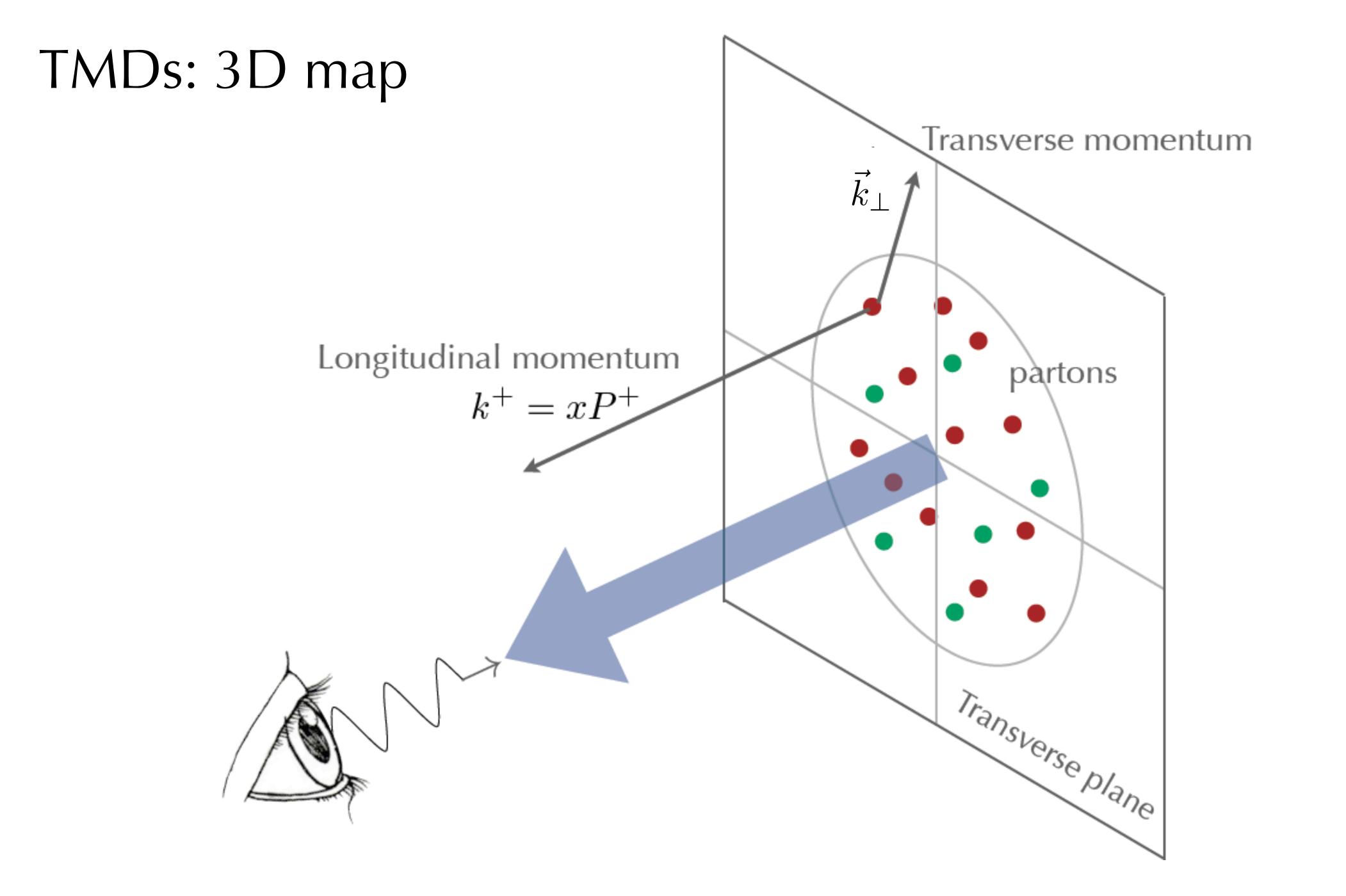
 k_{\perp} : parton transverse momentum

 $\Lambda, \Lambda', \Gamma$: nucleon and quark polarizations

Semi-Inclusive Deep Inelastic Scattering

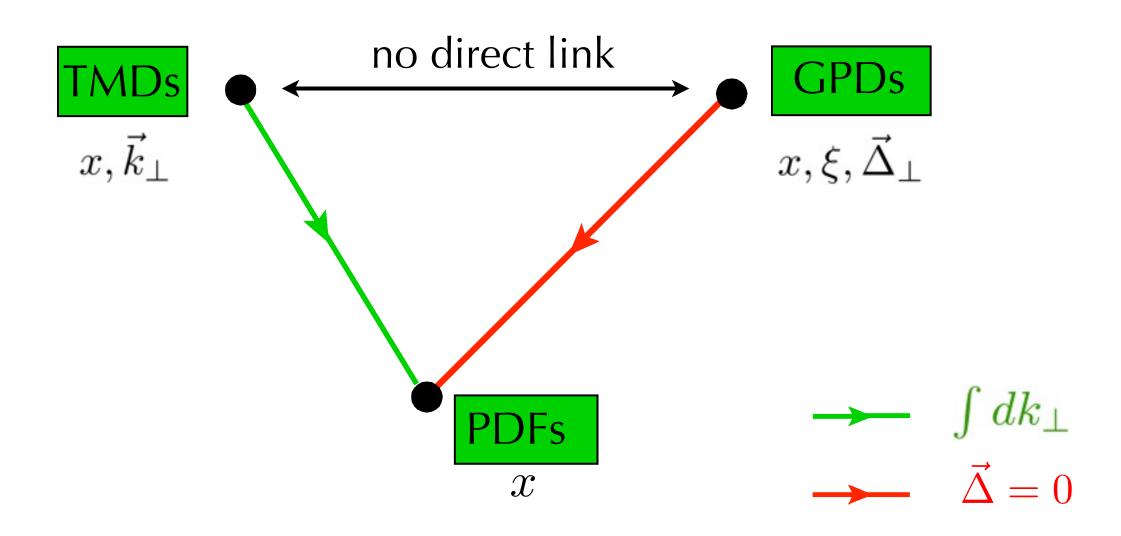






Generalized Parton Distributions (GPDs)

$$\frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{ik^{+}z^{-}} \langle p'^{+}, -\frac{\vec{\Delta}_{\perp}}{2}, \Lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W} \psi(\frac{z}{2}) | p^{+}, \frac{\vec{\Delta}_{\perp}}{2}, \Lambda \rangle_{z^{+}=0, z_{\perp}=0} \longrightarrow \text{non-diagonal matrix elements}$$



Generalized Parton Distributions (GPDs)

$$\frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{ik^{+}z^{-}} \langle p'^{+}, -\frac{\vec{\Delta}_{\perp}}{2}, \Lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W} \psi(\frac{z}{2}) | p^{+}, \frac{\vec{\Delta}_{\perp}}{2}, \Lambda \rangle_{z^{+}=0, z_{\perp}=0} \longrightarrow \text{non-diagonal matrix elements}$$

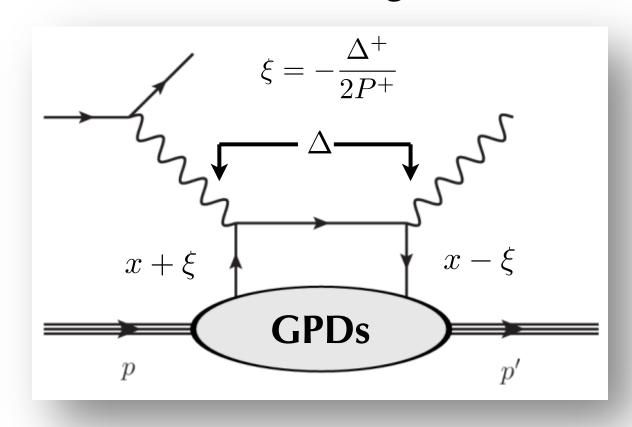
Depend on

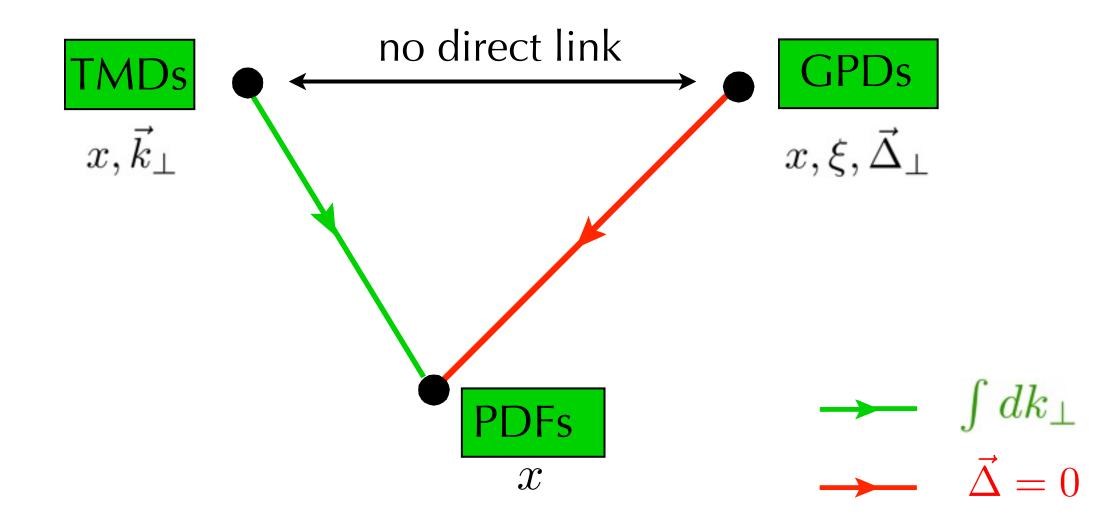
 $x = \frac{k^+}{P^+}$: longitudinal momentum fraction

 Δ : momentum transfer

 $\Lambda, \Lambda', \Gamma$: nucleon and quark polarizations

Deeply Virtual Compton Scattering





Generalized Parton Distributions (GPDs)

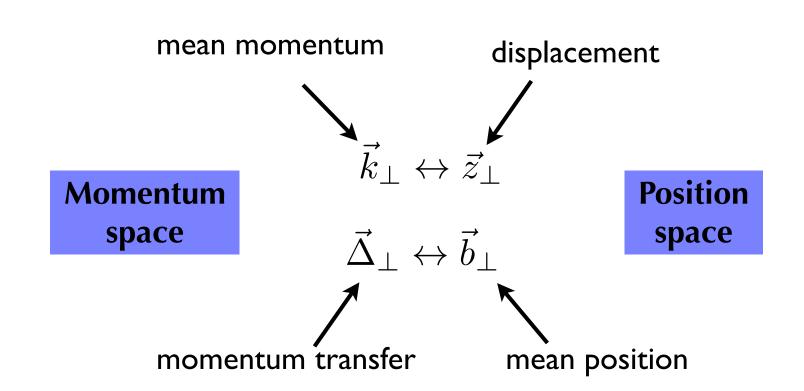
$$\frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{ik^{+}z^{-}} \langle p'^{+}, -\frac{\vec{\Delta}_{\perp}}{2}, \Lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W} \psi(\frac{z}{2}) | p^{+}, \frac{\vec{\Delta}_{\perp}}{2}, \Lambda \rangle_{z^{+}=0, z_{\perp}=0} \longrightarrow \text{non-diagonal matrix elements}$$

Depend on

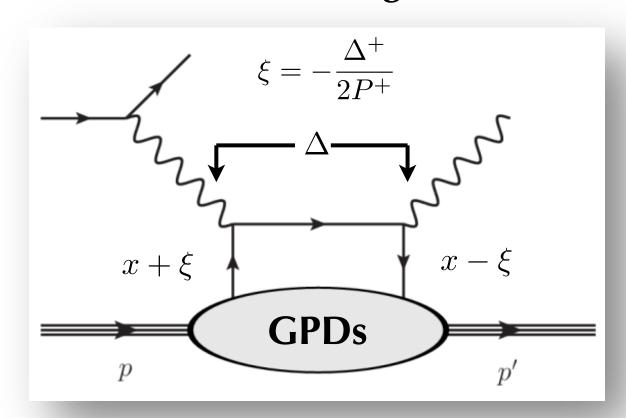
 $x = \frac{k^+}{P^+}$: longitudinal momentum fraction

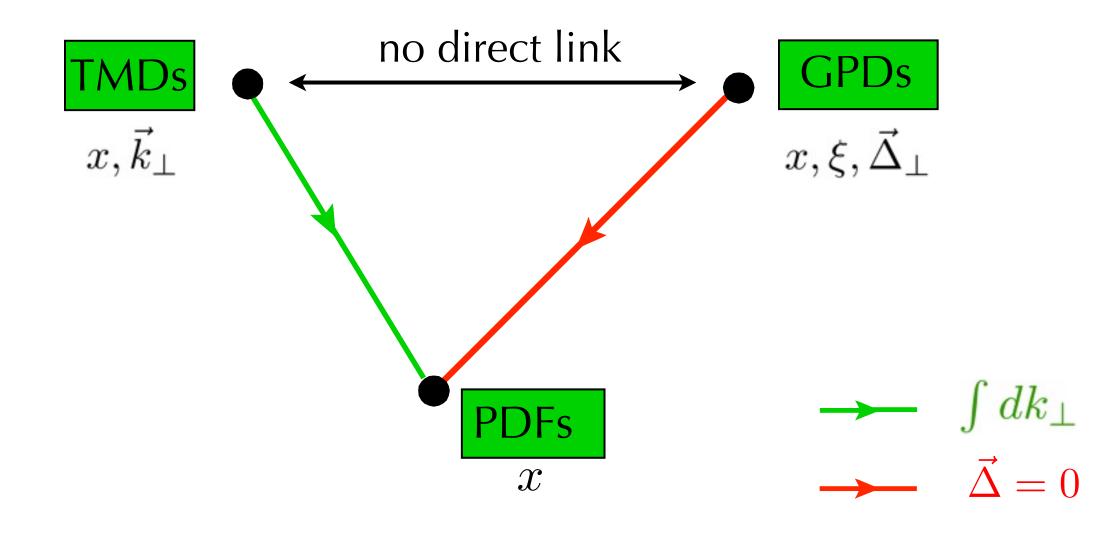
 Δ : momentum transfer $\vec{\Delta}_{\perp} \stackrel{\mathsf{FT}}{\longleftrightarrow} \vec{b}_{\perp}$: impact parameter

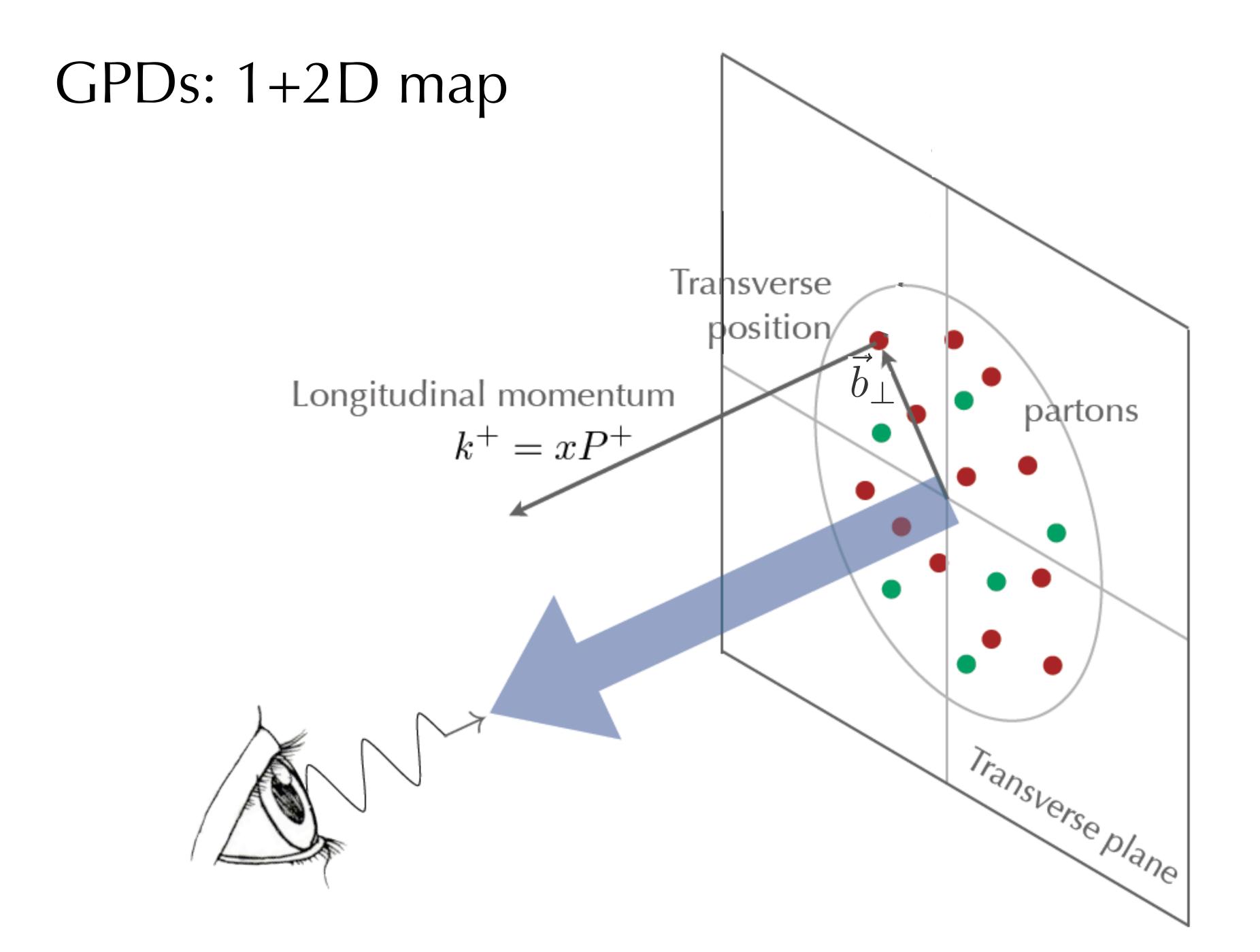
 $\Lambda, \Lambda', \Gamma$: nucleon and quark polarizations



Deeply Virtual Compton Scattering

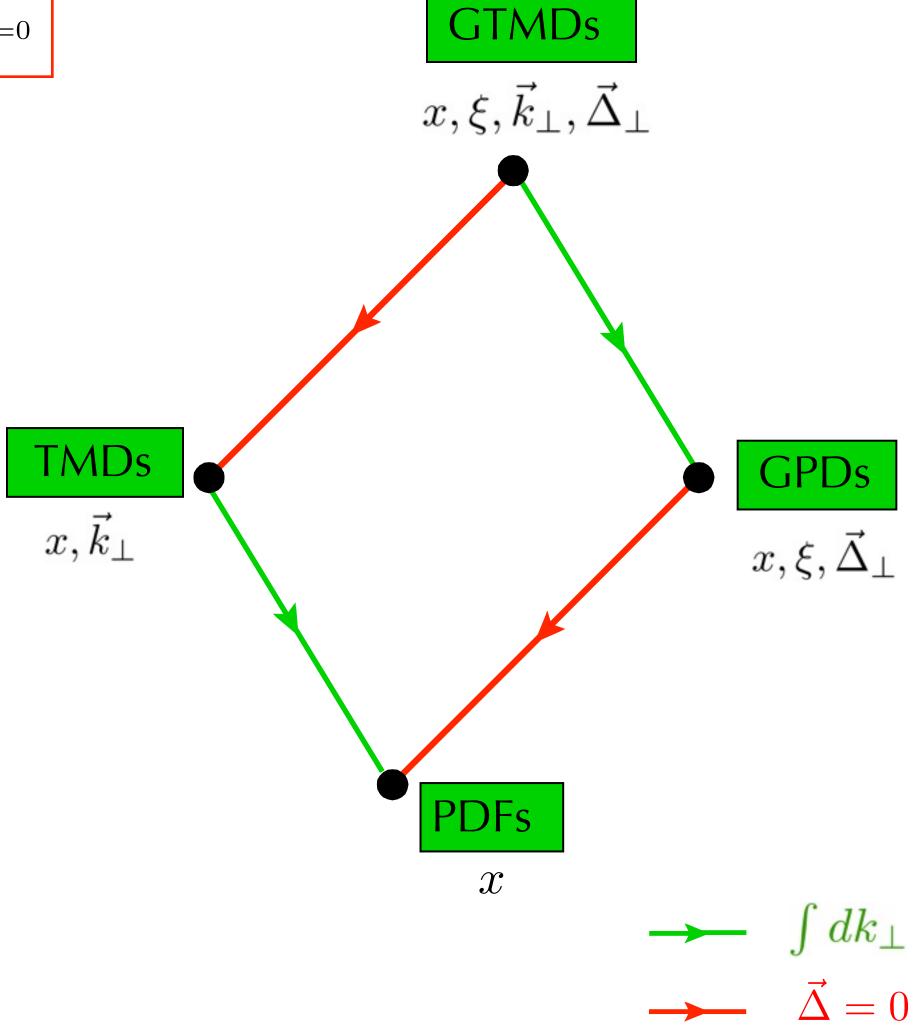






Generalized TMDs (GTMDs)

$$\frac{1}{2} \int \frac{\mathrm{d}z^{-} \mathrm{d}^{2} z_{\perp}}{(2\pi)^{3}} e^{ik \cdot z} \langle p^{+}, -\frac{\vec{\Delta}_{\perp}}{2}, \Lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W} \psi(\frac{z}{2}) | p^{+}, \frac{\vec{\Delta}_{\perp}}{2}, \Lambda \rangle_{z^{+}=0}$$



Generalized TMDs (GTMDs)

$$\frac{1}{2} \int \frac{\mathrm{d}z^{-} \mathrm{d}^{2} z_{\perp}}{(2\pi)^{3}} e^{ik \cdot z} \langle p^{+}, -\frac{\vec{\Delta}_{\perp}}{2}, \Lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W} \psi(\frac{z}{2}) | p^{+}, \frac{\vec{\Delta}_{\perp}}{2}, \Lambda \rangle_{z^{+}=0}$$

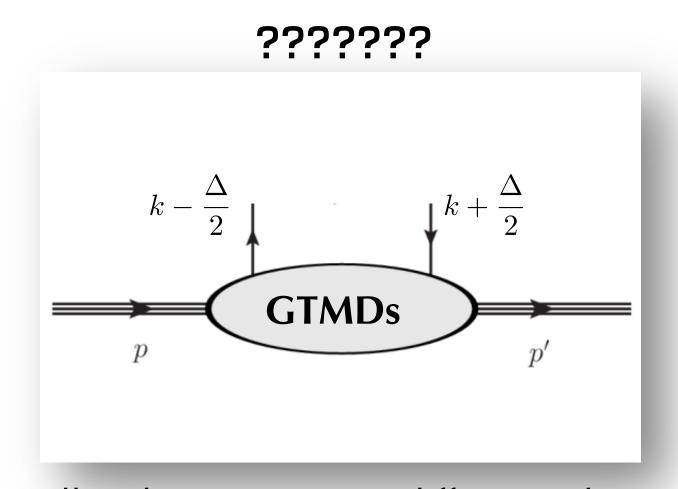
Depend on

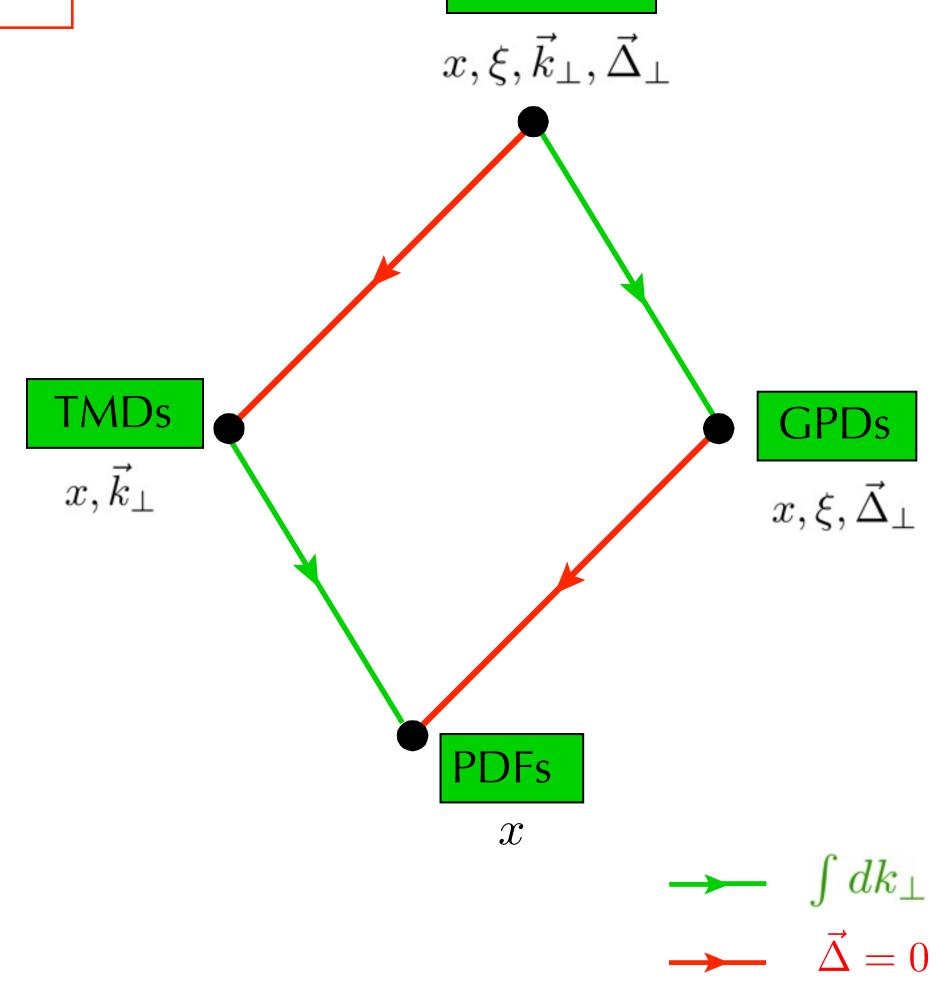
 $x = \frac{k^+}{P^+}$: longitudinal momentum fraction

 Δ : momentum transfer

 k_{\perp} : parton transverse momentum

 Λ , Λ' , Γ : nucleon and quark polarizations





relation of small-x gluon GTMDs to diffractive dijet production in DIS Hatta, Xiao, Yuan, PRL 116 (2016)

Generalized TMDs (GTMDs)

$$\frac{1}{2} \int \frac{\mathrm{d}z^{-} \mathrm{d}^{2} z_{\perp}}{(2\pi)^{3}} e^{ik \cdot z} \langle p^{+}, -\frac{\vec{\Delta}_{\perp}}{2}, \Lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W} \psi(\frac{z}{2}) | p^{+}, \frac{\vec{\Delta}_{\perp}}{2}, \Lambda \rangle_{z^{+}=0}$$

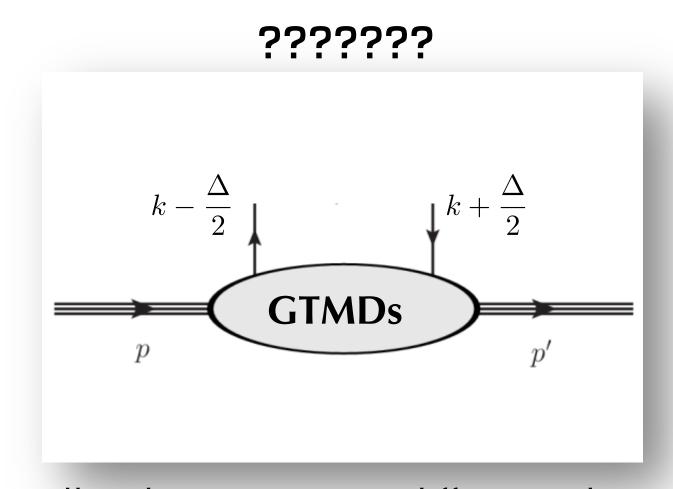
Depend on

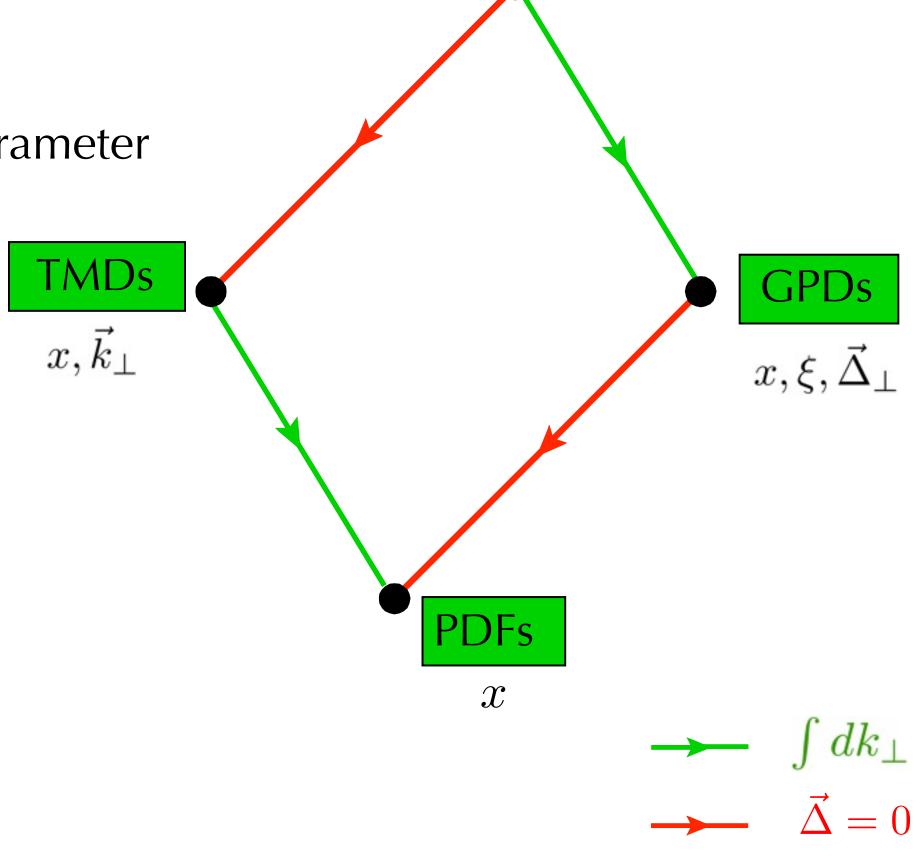
 $x = \frac{k^+}{P^+}$: longitudinal momentum fraction

: momentum transfer $\vec{\Delta}_{\perp} \stackrel{\mathsf{FT}}{\longleftrightarrow} \vec{b}_{\perp}$: impact parameter

 k_{\perp} : parton transverse momentum

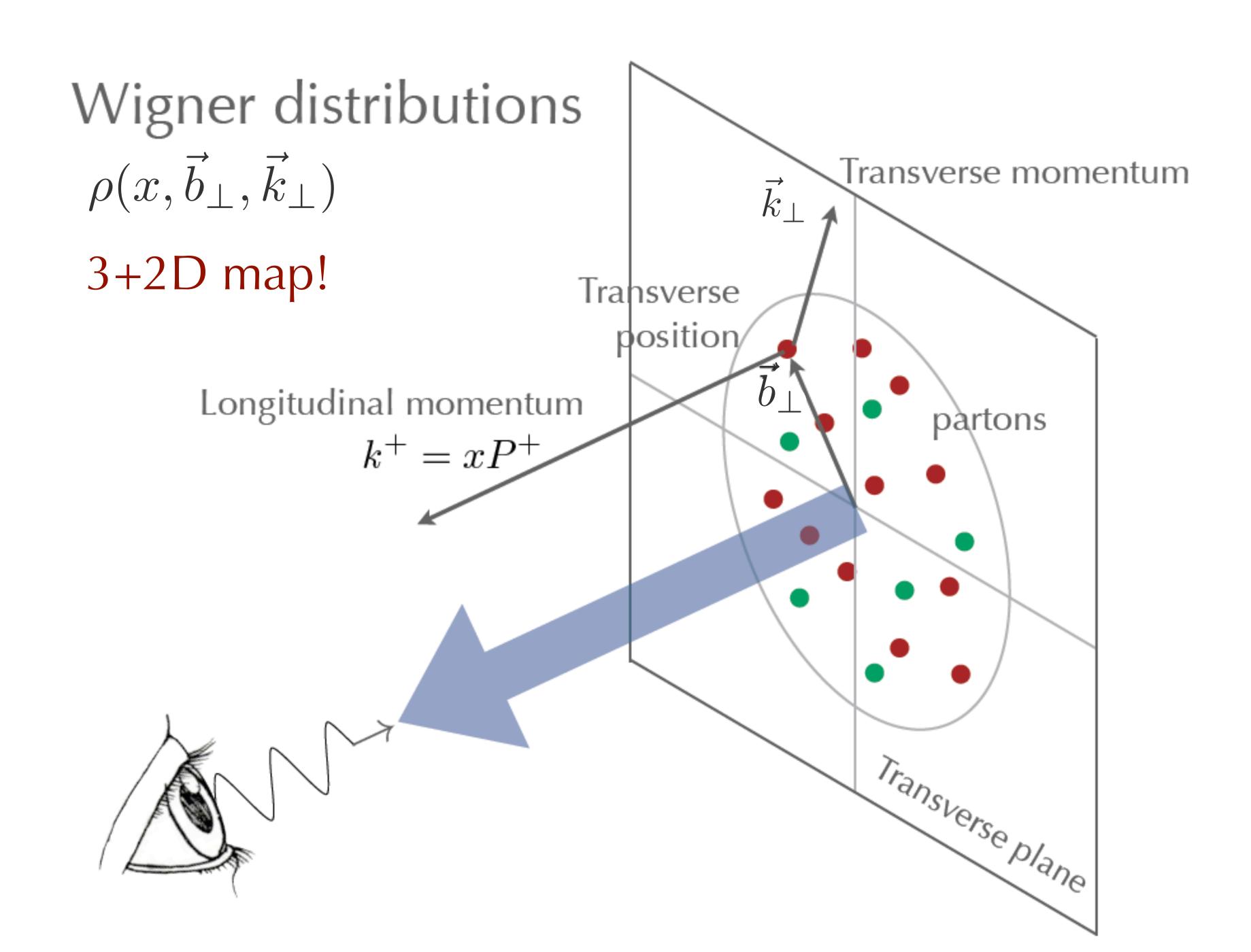
 Λ , Λ' , Γ : nucleon and quark polarizations

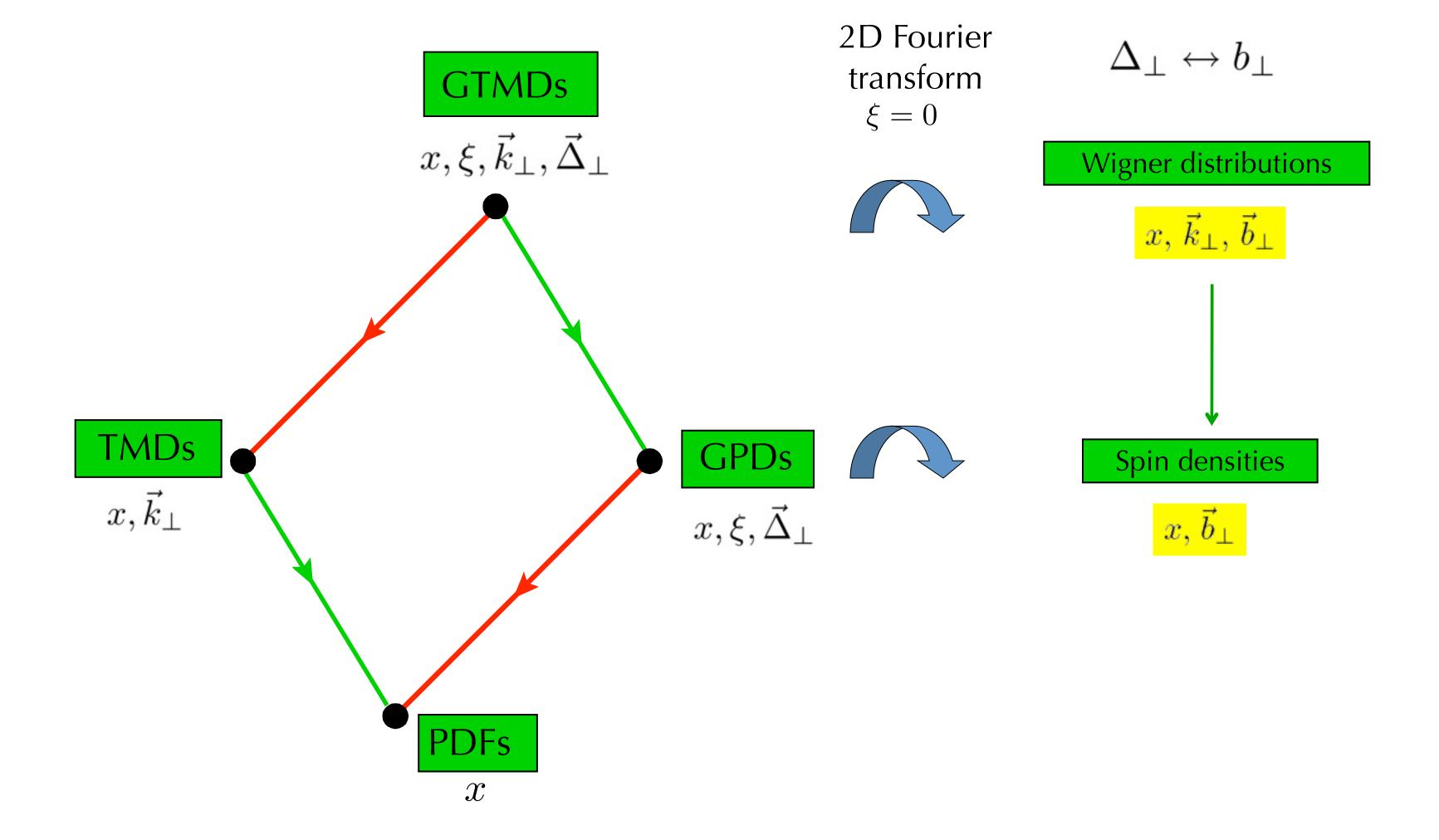




 $x, \xi, \vec{k}_{\perp}, \vec{\Delta}_{\perp}$

relation of small-x gluon GTMDs to diffractive dijet production in DIS Hatta, Xiao, Yuan, PRL 116 (2016)



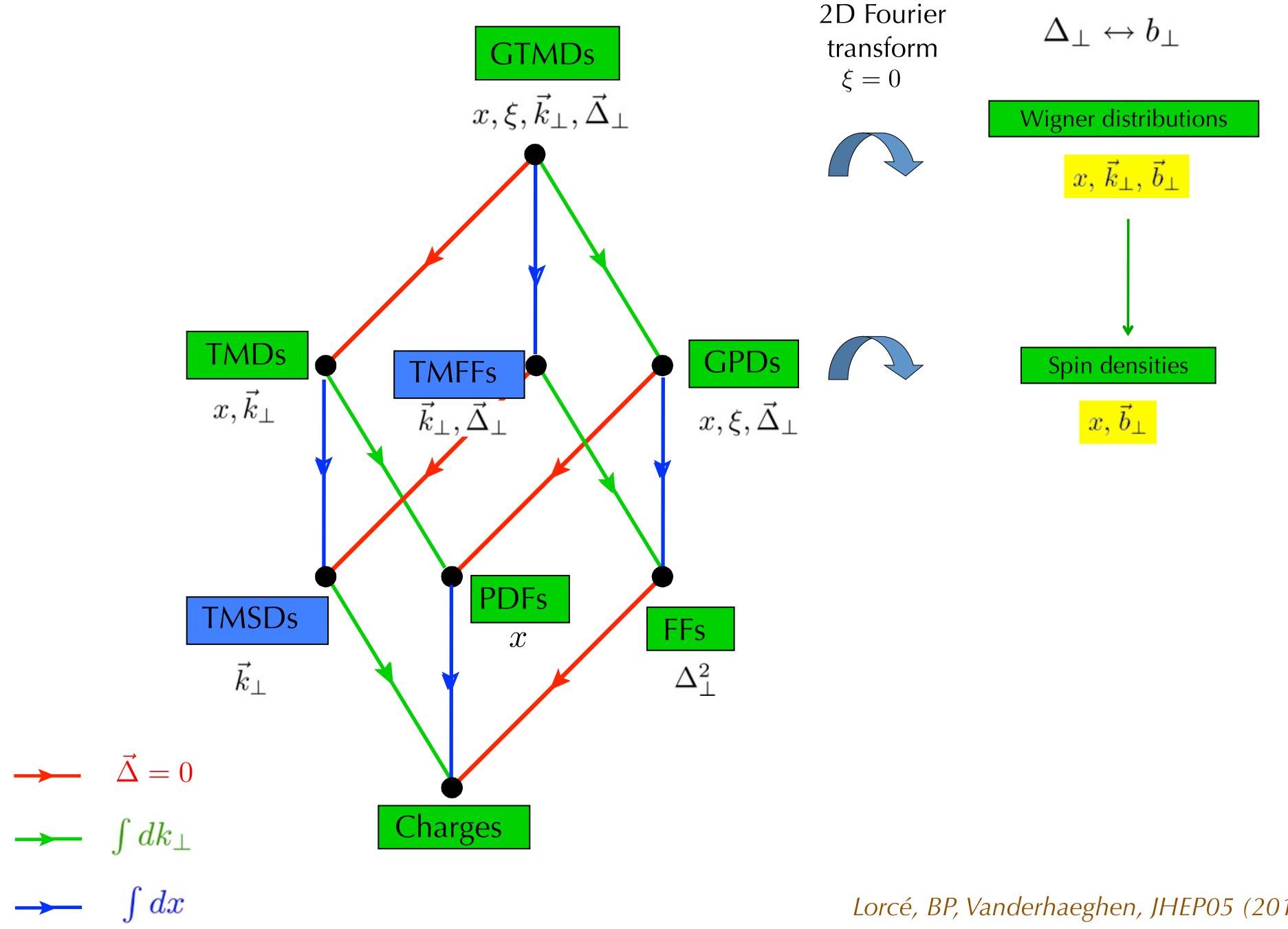


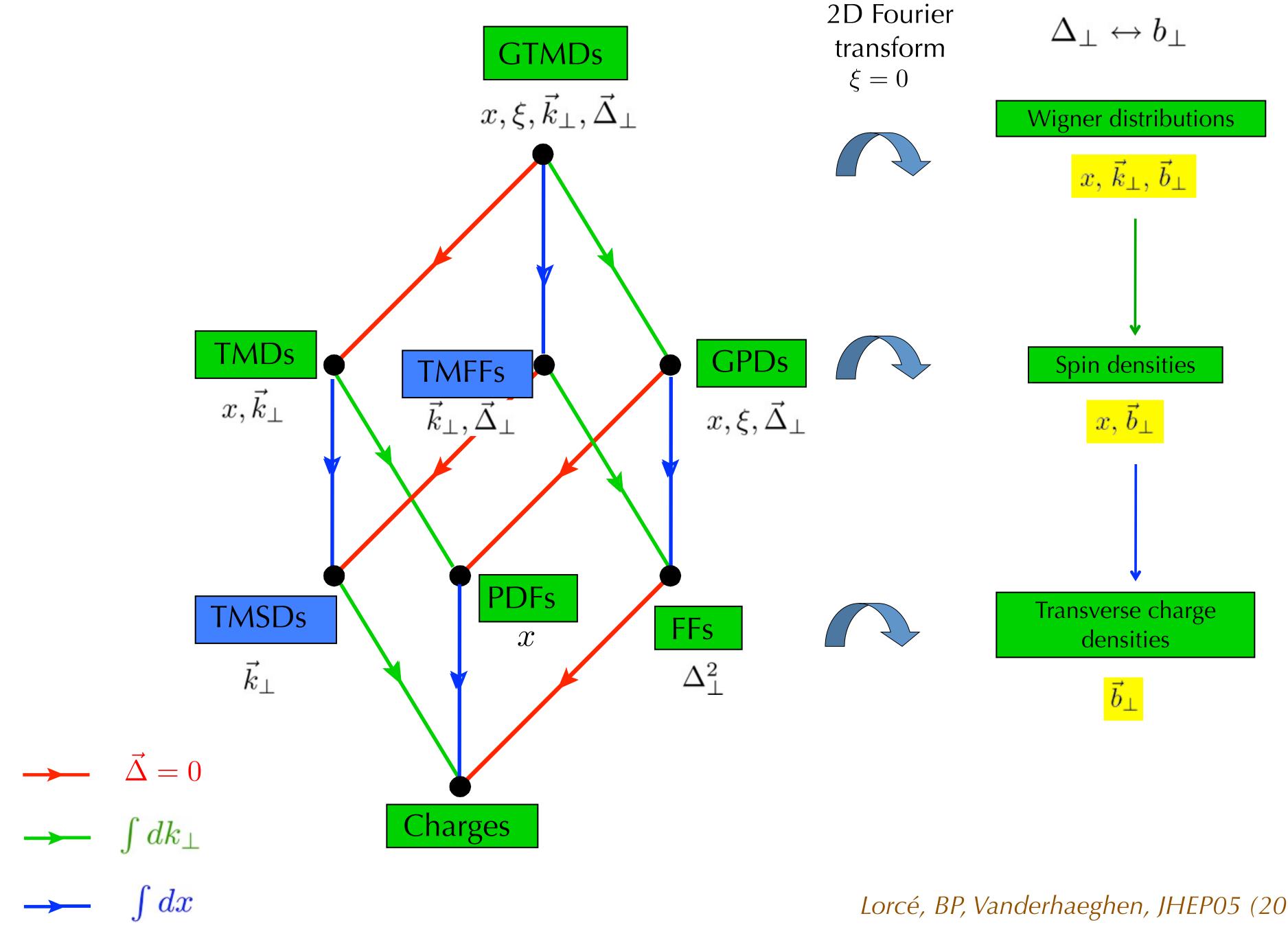
$$\vec{\Delta} = 0$$

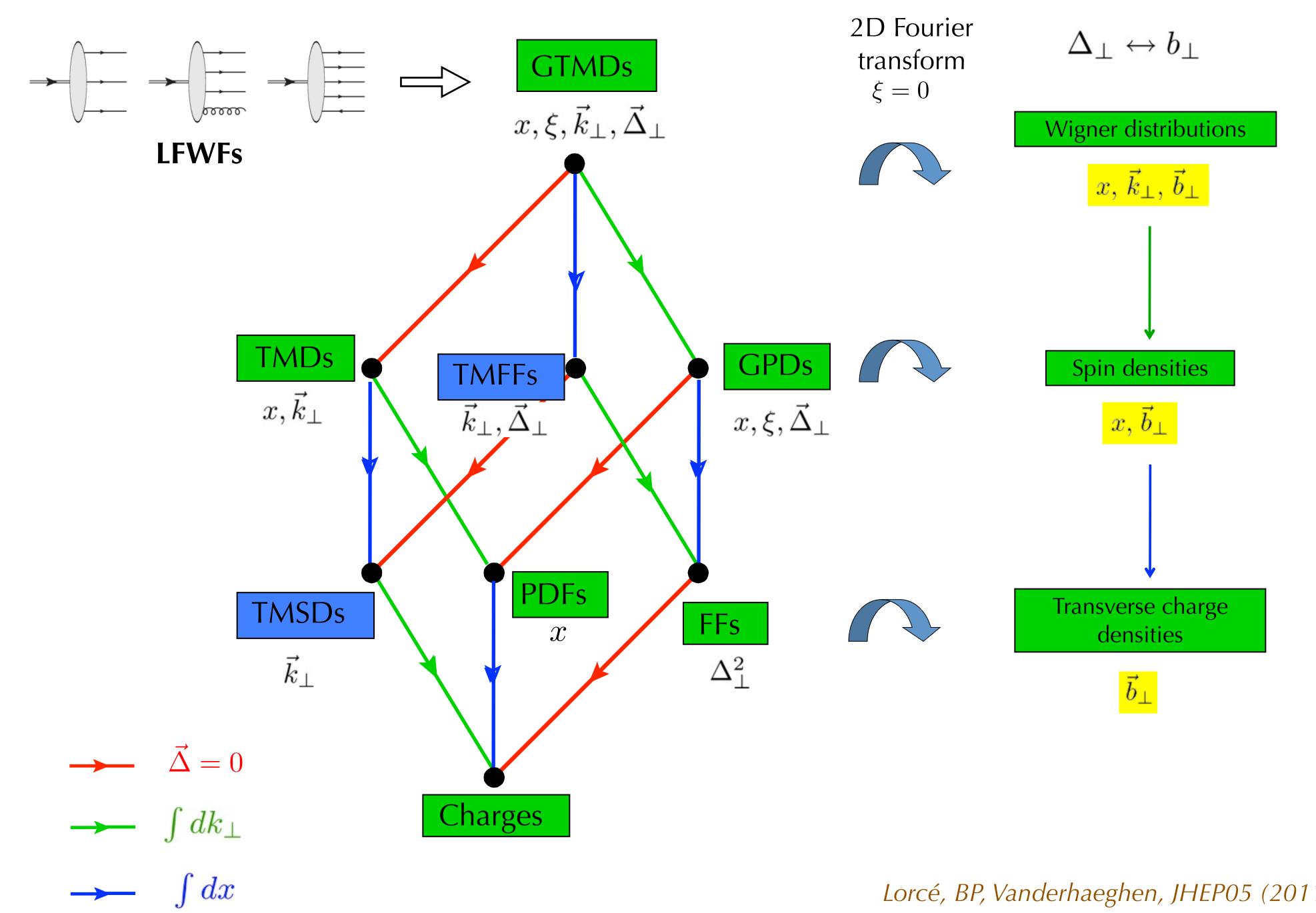
$$\vec{\Delta} = 0$$

$$\vec{\Delta} = 0$$

$$\vec{\Delta} = dk_{\perp}$$







Phase-Space Distributions

[Wigner (1932); Moyal (1949)]

$$\rho_W(r,k) = \int \frac{\mathrm{d}z}{2\pi} e^{-ikz} \psi^*(r - \frac{z}{2}) \psi(r + \frac{z}{2})$$

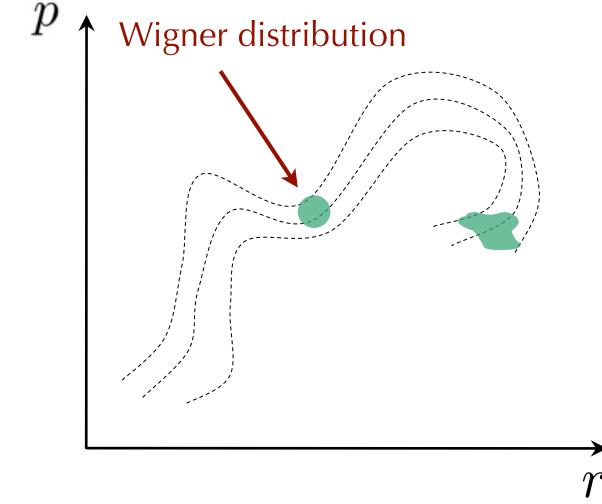
$$= \int \frac{\mathrm{d}\Delta}{2\pi} e^{-i\Delta r} \phi^*(k + \frac{\Delta}{2}) \phi(k - \frac{\Delta}{2})$$

Position-space density

$$|\psi(r)|^2 = \int \mathrm{d}k \, \rho_W(r,k)$$

Momentum-space density

$$|\phi(k)|^2 = 2\pi \int dr \, \rho_W(r,k)$$



Phase-Space Distributions

[Wigner (1932); Moyal (1949)]

$$\rho_W(r,k) = \int \frac{\mathrm{d}z}{2\pi} e^{-ikz} \psi^*(r - \frac{z}{2}) \psi(r + \frac{z}{2})$$

$$= \int \frac{\mathrm{d}\Delta}{2\pi} e^{-i\Delta r} \phi^*(k + \frac{\Delta}{2}) \phi(k - \frac{\Delta}{2})$$

Position-space density

$$|\psi(r)|^2 = \int \mathrm{d}k \, \rho_W(r,k)$$

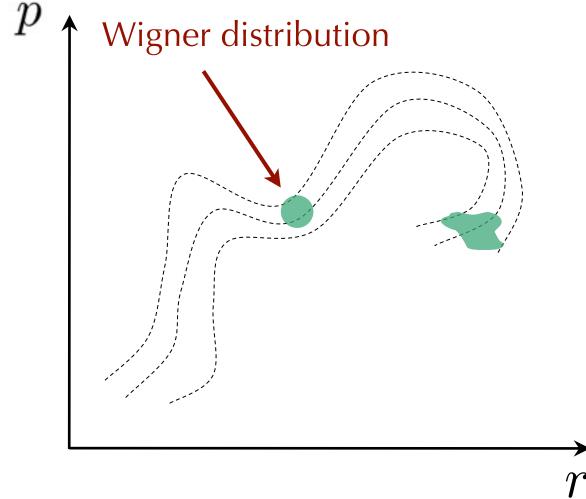
Momentum-space density

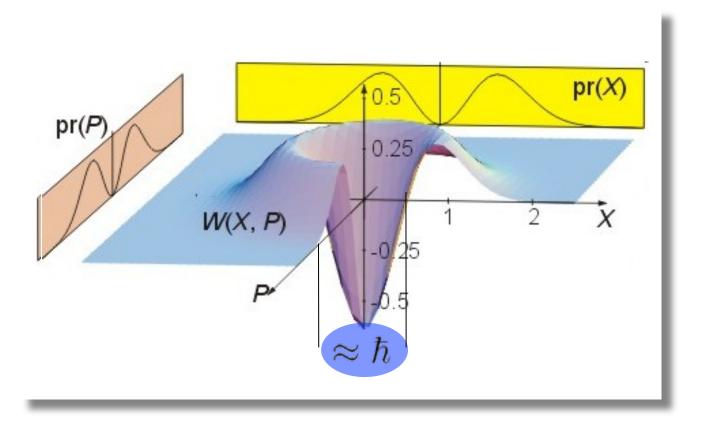
$$|\phi(k)|^2 = 2\pi \int \mathrm{d}r \,\rho_W(r,k)$$

Quasi-probability: $\rho(\vec{r}, \vec{k}) \geq 0$

$$\rho(\vec{r}, \vec{k}) \not \geq 0$$

Heisenberg's uncertainty relation





Phase-Space Distributions

[Wigner (1932); Moyal (1949)]

$$\rho_W(r,k) = \int \frac{\mathrm{d}z}{2\pi} e^{-ikz} \psi^*(r - \frac{z}{2}) \psi(r + \frac{z}{2})$$

$$= \int \frac{\mathrm{d}\Delta}{2\pi} e^{-i\Delta r} \phi^*(k + \frac{\Delta}{2}) \phi(k - \frac{\Delta}{2})$$

Position-space density

$$|\psi(r)|^2 = \int \mathrm{d}k \, \rho_W(r,k)$$

Momentum-space density

$$|\phi(k)|^2 = 2\pi \int dr \, \rho_W(r,k)$$

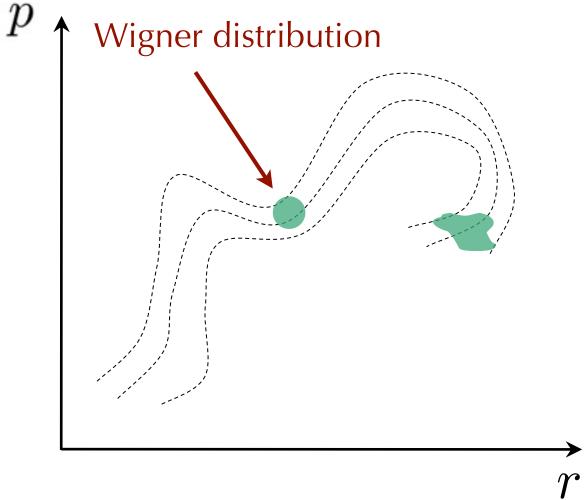
Quasi-probability: $\rho(\vec{r}, \vec{k}) \geq 0$

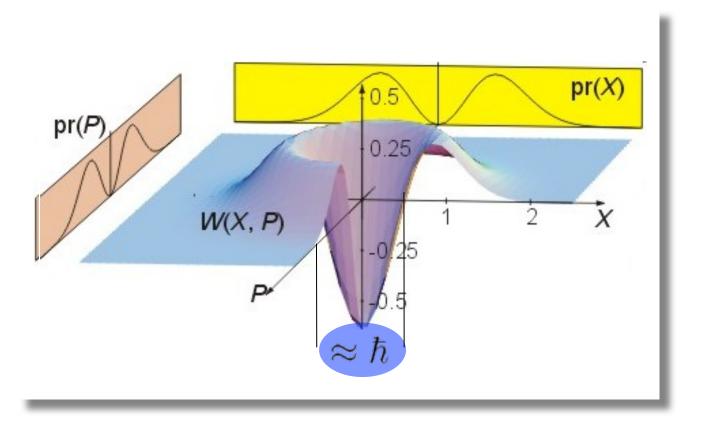
$$\rho(\vec{r}, \vec{k}) \not\geq 0$$

Heisenberg's uncertainty relation

Quantum average

$$\langle \hat{O} \rangle = \int dr \, dk \, O(r, k) \, \rho_W(r, k)$$





Quark Wigner operator



Quark Wigner operator

$$\widehat{W}^{[\Gamma]}(\vec{r},k) = \int \frac{\mathrm{d}^4z}{(2\pi)^4} e^{ik\cdot z} \bar{\psi}(\vec{r}-\frac{z}{2}) \Gamma \mathcal{W} \psi(\vec{r}+\frac{z}{2})$$
 canonical momentum $k \leftrightarrow i\nabla$

Fixed light-front time

$$z^+ = 0 \qquad \longleftrightarrow \qquad \int \mathrm{d}k^-$$

Quark Wigner operator

$$\widehat{W}^{[\Gamma]}(\vec{r},k) = \int \frac{\mathrm{d}^4z}{(2\pi)^4} e^{ik\cdot z} \bar{\psi}(\vec{r} - \frac{z}{2}) \Gamma \mathcal{W} \psi(\vec{r} + \frac{z}{2})$$
 canonical momentum $k \leftrightarrow i\nabla$

Fixed light-front time

$$z^+ = 0 \qquad \longleftrightarrow \qquad \int \mathrm{d}k^-$$

Wigner distributions in the Breit frame

$$\rho_{\Lambda'\Lambda}^{[\Gamma]}(\vec{r},k^+,\vec{k}_\perp) = \frac{1}{2} \int \frac{\mathrm{d}^3\vec{\Delta}}{(2\pi)^3} e^{-i\vec{\Delta}\cdot\vec{r}} \langle \frac{\vec{\Delta}}{2}, \Lambda' | \widehat{W}^{[\Gamma]}(0,k^+,\vec{k}_\perp) | -\frac{\vec{\Delta}}{2}, \Lambda \rangle$$
3+3 D

Ji (2003) Belitsky, Ji, Yuan (2004)

no semi-classical interpretation

Quark Wigner operator

$$\widehat{W}^{[\Gamma]}(\vec{r},k) = \int \frac{\mathrm{d}^4z}{(2\pi)^4} e^{ik\cdot z} \bar{\psi}(\vec{r}-\frac{z}{2}) \Gamma \mathcal{W} \psi(\vec{r}+\frac{z}{2})$$
 canonical momentum $k \leftrightarrow i\nabla$ Wilson line

Fixed light-front time

$$z^+ = 0 \qquad \longleftrightarrow \qquad \int \mathrm{d}k^-$$

Wigner distributions in the Breit frame

$$\rho_{\Lambda'\Lambda}^{[\Gamma]}(\vec{r},k^+,\vec{k}_\perp) = \frac{1}{2} \int \frac{\mathrm{d}^3\vec{\Delta}}{(2\pi)^3} e^{-i\vec{\Delta}\cdot\vec{r}} \langle \frac{\vec{\Delta}}{2}, \Lambda' | \widehat{W}^{[\Gamma]}(0,k^+,\vec{k}_\perp) | -\frac{\vec{\Delta}}{2}, \Lambda \rangle$$

Ji (2003) Belitsky, Ji, Yuan (2004)

no semi-classical interpretation

Wigner distributions in the Drell-Yan frame
$$(\Delta^+ = 0)$$

$$\rho_{\Lambda'\Lambda}^{[\Gamma]}(\vec{b}_{\perp}, k^{+}, \vec{k}_{\perp}) = \frac{1}{2} \int \frac{\mathrm{d}^{2} \vec{\Delta}_{\perp}}{(2\pi)^{2}} e^{-i\vec{\Delta}_{\perp} \cdot \vec{b}_{\perp}} \langle p^{+}, \frac{\vec{\Delta}_{\perp}}{2}, \Lambda' | \widehat{W}^{[\Gamma]}(0, k^{+}, \vec{k}_{\perp}) | p^{+}, -\frac{\vec{\Delta}_{\perp}}{2}, \Lambda \rangle \quad \text{Lorcé, BP, Xiong, Yuan (2012)}$$

semi-classical interpretation

Quark Wigner operator

$$\widehat{W}^{[\Gamma]}(\vec{r},k) = \int \frac{\mathrm{d}^4z}{(2\pi)^4} e^{ik\cdot z} \bar{\psi}(\vec{r} - \frac{z}{2}) \Gamma \mathcal{W} \psi(\vec{r} + \frac{z}{2})$$
 canonical momentum $k \leftrightarrow i\nabla$

Fixed light-front time

$$z^+ = 0 \qquad \longleftrightarrow \qquad \int \mathrm{d}k^-$$

Wigner distributions in the Breit frame

$$\rho_{\Lambda'\Lambda}^{[\Gamma]}(\vec{r},k^+,\vec{k}_\perp) = \frac{1}{2} \int \frac{\mathrm{d}^3 \vec{\Delta}}{(2\pi)^3} e^{-i\vec{\Delta}\cdot\vec{r}} \langle \frac{\vec{\Delta}}{2}, \Lambda' | \widehat{W}^{[\Gamma]}(0,k^+,\vec{k}_\perp) | -\frac{\vec{\Delta}}{2}, \Lambda \rangle$$
3+3 D

Ji (2003) Belitsky, Ji, Yuan (2004)

no semi-classical interpretation

Wigner distributions
in the Drell-Yan frame
$$(\Delta^+ = 0)$$

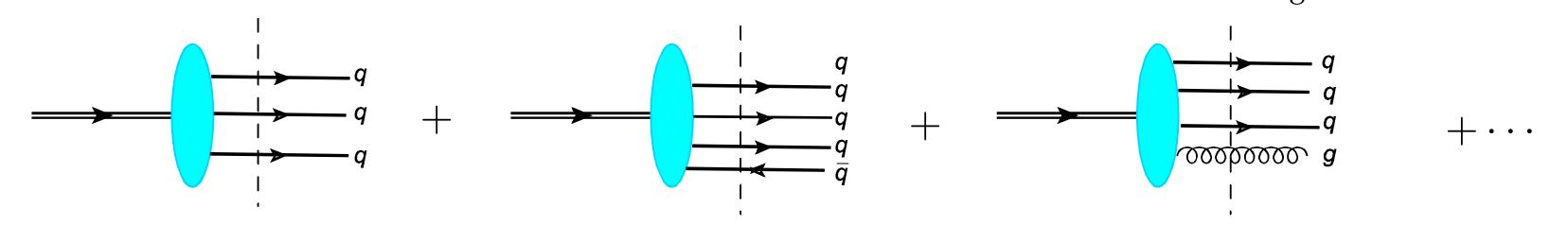
$$\rho_{\Lambda'\Lambda}^{[\Gamma]}(\vec{b}_{\perp}, k^{+}, \vec{k}_{\perp}) = \frac{1}{2} \int \frac{\mathrm{d}^{2} \vec{\Delta}_{\perp}}{(2\pi)^{2}} e^{-i\vec{\Delta}_{\perp} \cdot \vec{b}_{\perp}} \langle p^{+}, \frac{\vec{\Delta}_{\perp}}{2}, \Lambda' | \widehat{W}^{[\Gamma]}(0, k^{+}, \vec{k}_{\perp}) | p^{+}, -\frac{\vec{\Delta}_{\perp}}{2}, \Lambda \rangle \quad Lorc\acute{e}, BP (2011) \\ Lorc\acute{e}, BP, Xiong, Yuan (2012)$$

2+3 D

Generalized Transverse Momentum Dependent Distributions

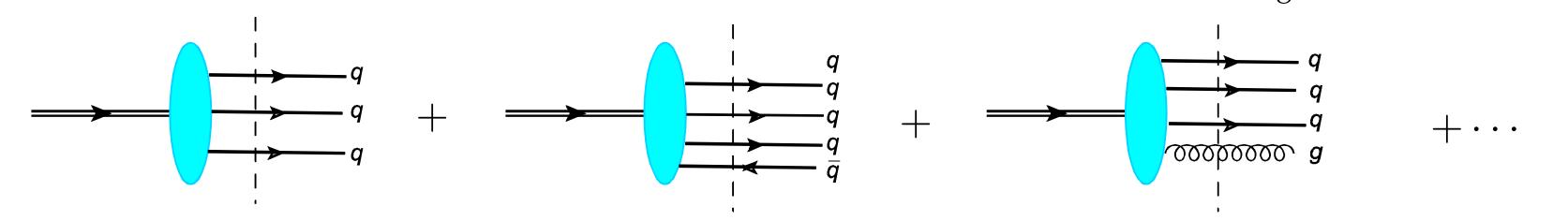
• Fock expansion of Nucleon state:

$$|N\rangle = \Psi_{3q}|qqq\rangle + \Psi_{3q\,q\bar{q}}|3q\,q\bar{q}\rangle + \Psi_{3q\,g}|qqqg\rangle + \cdots$$
 fixed light-cone time (x+=0)



• Fock expansion of Nucleon state:

$$|N\rangle = \Psi_{3q}|qqq\rangle + \Psi_{3q\,q\bar{q}}|3q\,q\bar{q}\rangle + \Psi_{3q\,g}|qqqg\rangle + \cdots$$
 fixed light-cone time (x+=0)

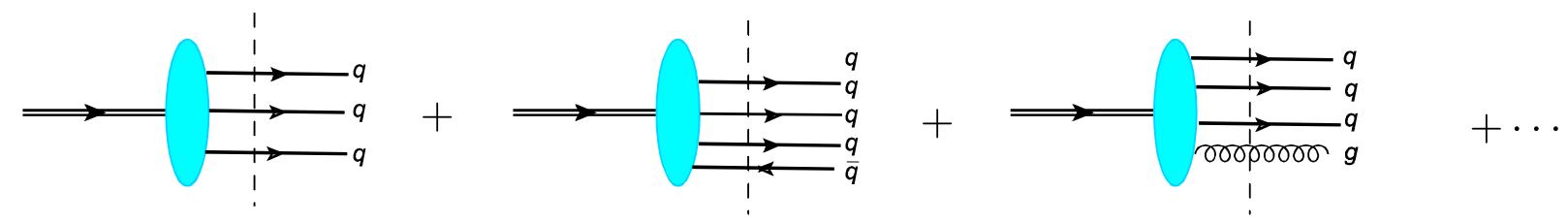


• Probability to find N partons in the nucleon $\rho_{N,\beta}^{\Lambda}=\int [dx]_N[d^2k_{\perp}]_N|\Psi_{\lambda_1...\lambda_N}^{\Lambda}|^2$ normalization $\sum_{N,\beta}\rho_{N,\beta}^{\Lambda}=1$

• Fock expansion of Nucleon state:

$$|N\rangle = \Psi_{3q}|qqq\rangle + \Psi_{3q\,q\bar{q}}|3q\,q\bar{q}\rangle + \Psi_{3q\,g}|qqqg\rangle + \cdots$$

fixed light-cone time $(x^+=0)$



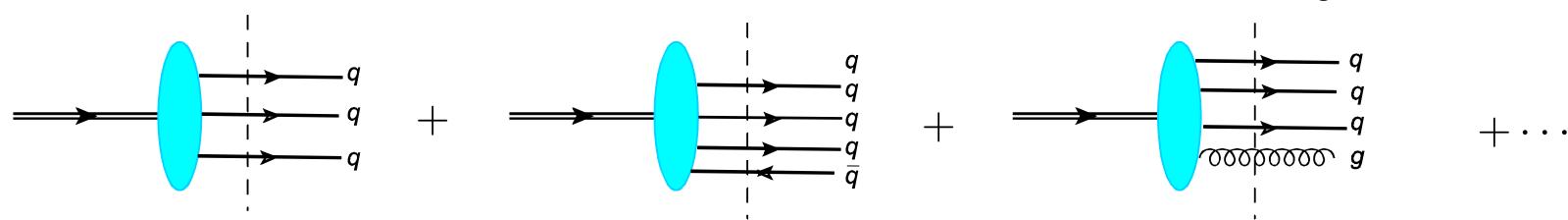
- Probability to find N partons in the nucleon $\rho_{N,\beta}^{\Lambda}=\int [dx]_N[d^2k_{\perp}]_N|\Psi_{\lambda_1...\lambda_N}^{\Lambda}|^2$ normalization $\sum_{N,\beta}\rho_{N,\beta}^{\Lambda}=1$
- Eigenstates of momentum

$$P^{+} = \sum_{i=1}^{N} k_{i}^{+}$$
 $\vec{P}_{\perp} = \sum_{i=1}^{N} \vec{k}_{i \perp} = \vec{0}_{\perp}$

Fock expansion of Nucleon state:

$$|N\rangle = \Psi_{3q}|qqq\rangle + \Psi_{3q\,q\bar{q}}|3q\,q\bar{q}\rangle + \Psi_{3q\,g}|qqqg\rangle + \cdots$$

fixed light-cone time $(x^+=0)$



- Probability to find N partons in the nucleon $\rho_{N,\beta}^{\Lambda} = \int [dx]_N [d^2k_{\perp}]_N |\Psi_{\lambda_1 \dots \lambda_N}^{\Lambda}|^2$ normalization $\sum_{N,\beta} \rho_{N,\beta}^{\Lambda} = 1$
- Eigenstates of momentum

$$P^{+} = \sum_{i=1}^{N} k_{i}^{+}$$
 $\vec{P}_{\perp} = \sum_{i=1}^{N} \vec{k}_{i \perp} = \vec{0}_{\perp}$

Eigenstates of parton light-front helicity

$$\hat{S}_{iz} \, \Psi^{\Lambda}_{\lambda_1 \dots \lambda_N} = \lambda_i \, \Psi^{\Lambda}_{\lambda_1 \lambda_2 \dots \lambda_N}$$

• Eigenstates of total orbital angular momentum $\hat{L}_z \Psi^{\Lambda}_{\lambda_1 \dots \lambda_N} = l_z \Psi^{\Lambda}_{\lambda_1 \lambda_2 \dots \lambda_N}$

$$\hat{L}_z \, \Psi^{\Lambda}_{\lambda_1 \dots \lambda_N} = l_z \, \Psi^{\Lambda}_{\lambda_1 \lambda_2 \dots \lambda_N}$$

$$\Lambda = \sum_{i=1}^{N} \lambda_i + l_z$$

 $A^+ = 0$ gauge

total helicity

$$s_z = \langle \hat{S}_z \rangle = \sum_{N,\beta} \sum_{i=1}^{N} \lambda_i \, \rho_{N,\beta}^{\Lambda}$$

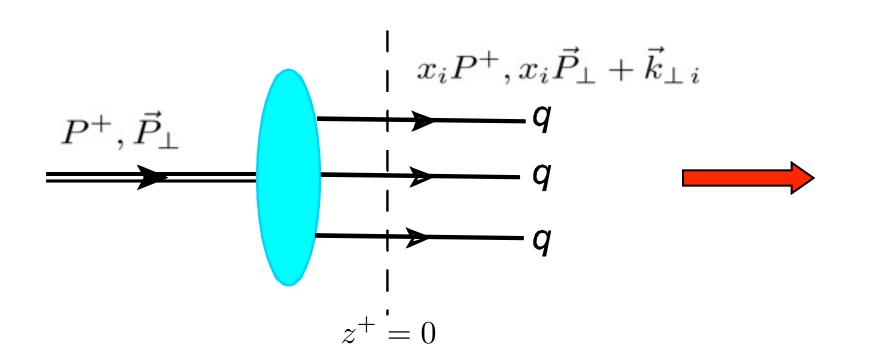
total OAM

$$\ell_z = \langle \hat{L}_z \rangle = \sum_{N,\beta} \sum_{i=1}^{N} l_z \, \rho_{N,\beta}^{\Lambda}$$

nucleon helicity

$$\Lambda = s_z + \ell_z$$

LFWF overlap representation



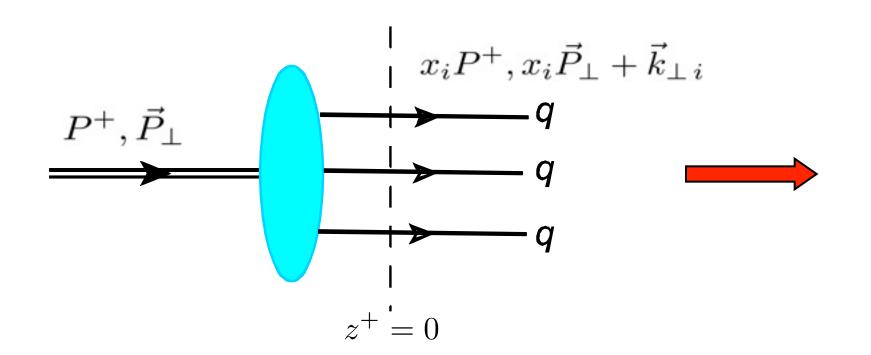
$$\Psi_{\lambda_1 \lambda_2 \lambda_3}^{\Lambda; q_1 q_2 q_3}(x_i, \vec{k}_{\perp,i})$$

invariant under boost, independent of P^µ

internal variables:
$$\sum_{i=1}^{3} x_i = 1$$
, $\sum_{i=1}^{3} \vec{k}_{\perp i} = \vec{0}_{\perp}$

Brodsky, Pauli, Pinsky, 1998

LFWF overlap representation



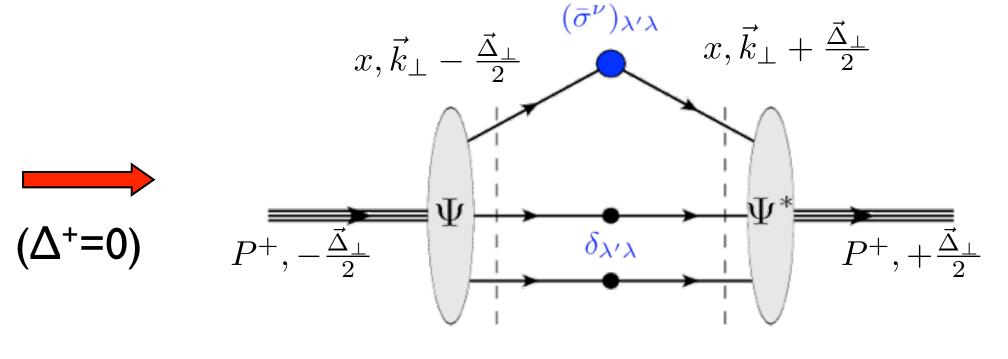
quark-quark correlator

$$\Psi_{\lambda_1 \lambda_2 \lambda_3}^{\Lambda; q_1 q_2 q_3}(x_i, \vec{k}_{\perp,i})$$

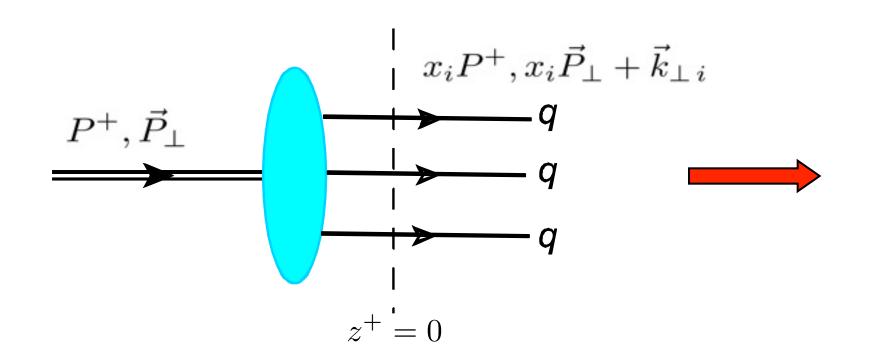
invariant under boost, independent of P^µ

internal variables:
$$\sum_{i=1}^{3} x_i = 1$$
, $\sum_{i=1}^{3} \vec{k}_{\perp i} = \vec{0}_{\perp}$

Brodsky, Pauli, Pinsky, 1998



LFWF overlap representation

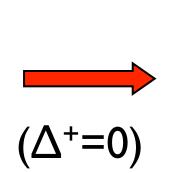


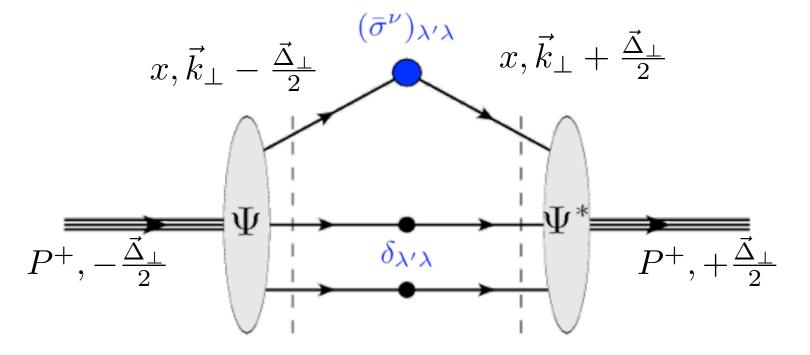
 $\Psi_{\lambda_1 \lambda_2 \lambda_3}^{\Lambda; q_1 q_2 q_3}(x_i, \vec{k}_{\perp,i})$

invariant under boost, independent of P^µ

internal variables: $\sum_{i=1}^{3} x_i = 1$, $\sum_{i=1}^{3} \vec{k}_{\perp i} = \vec{0}_{\perp}$

Brodsky, Pauli, Pinsky, 1998





$$\Psi_{\lambda_1\lambda_2\lambda_3}^{\Lambda;q_1q_2q_3}(x_i,\vec{k}_{\perp,i}) = \sum_{s_i} \phi(x_i,\vec{k}_{\perp,i}) \, \Phi_{s_1s_2s_3}^{\Lambda;q_1q_2q_3} \, \prod_i \, D_{s_i\lambda_i}^{1/2*}(R_{cf})$$
 momentum wf spin-flavor wf rotation from canonical spin to light-cone spin

General formalism valid for Bag Model, LFxQSM, LFCQM, Quark-Diquark, Covariant Parton Models

Common assumptions:

➤ No gluons

> Independent quarks

Light-Front Constituent Quark Model

momentum-space wf

Schlumpf, Ph.D. Thesis, hep-ph/921155

$$\Psi(k_i) = \frac{N}{(M_0^2 + \beta^2)^{\gamma}} \qquad M_0 = \sum_i^3 \sqrt{m_i^2 + \vec{k}_i^2}$$

$$M_0 = \sum_{i=1}^{3} \sqrt{m_i^2 + \vec{k}_i^2}$$

N: normalization constant

 β , γ parameters fitted to anomalous magnetic moments of the nucleon

Light-Front Constituent Quark Model

 momentum-space wf Schlumpf, Ph.D. Thesis, hep-ph/921155

$$\Psi(k_i) = \frac{N}{(M_0^2 + \beta^2)^{\gamma}} \qquad M_0 = \sum_i^3 \sqrt{m_i^2 + \vec{k}_i^2}$$

$$M_0 = \sum_i^3 \sqrt{m_i^2 + \vec{k}_i^2}$$

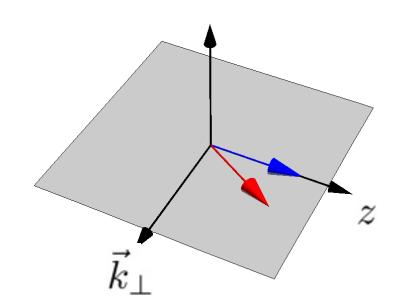
N: normalization constant

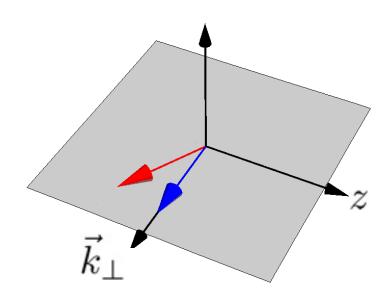
 β , γ parameters fitted to anomalous magnetic moments of the nucleon

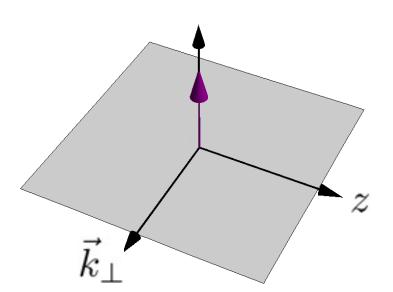
• spin-structure:

$$q_{\lambda}^{LC}(k) = D_{\lambda s}^{(1/2)*} q_{s}^{C}(k)$$

$$q_{\lambda}^{LC}(k) = D_{\lambda s}^{(1/2)*} q_{s}^{C}(k)$$
 $D_{\lambda s}^{(1/2)*}(k) = \frac{1}{|\vec{K}|} \begin{pmatrix} K_{z} & K_{L} \\ -K_{R} & K_{z} \end{pmatrix}$







Light-Front Constituent Quark Model

 momentum-space wf Schlumpf, Ph.D. Thesis, hep-ph/921155

$$\Psi(k_i) = \frac{N}{(M_0^2 + \beta^2)^{\gamma}} \qquad M_0 = \sum_i^3 \sqrt{m_i^2 + \vec{k}_i^2}$$

$$M_0 = \sum_i^3 \sqrt{m_i^2 + \vec{k}_i^2}$$

N: normalization constant

 β , γ parameters fitted to anomalous magnetic moments of the nucleon

• spin-structure:

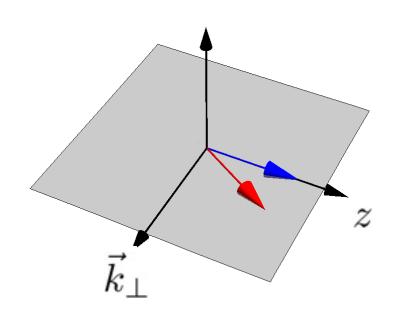
$$q_{\lambda}^{LC}(k) = D_{\lambda s}^{(1/2)*} q_s^C(k)$$

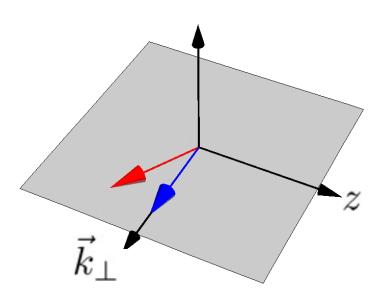
$$q_{\lambda}^{LC}(k) = D_{\lambda s}^{(1/2)*} q_{s}^{C}(k)$$
 $D_{\lambda s}^{(1/2)*}(k) = \frac{1}{|\vec{K}|} \begin{pmatrix} K_{z} & K_{L} \\ -K_{R} & K_{z} \end{pmatrix}$

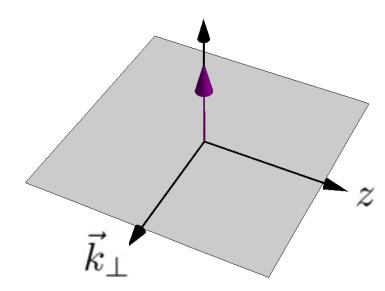
non-interacting quarks \longrightarrow $K_z = m + x \mathcal{M}_0$ $\vec{K}_\perp = \vec{k}_\perp$ (Melosh rotation)

$$K_z = m + x\mathcal{M}_0$$

$$\vec{K}_{\perp} = \vec{k}_{\perp}$$







Light-Front Constituent Quark Model

 momentum-space wf Schlumpf, Ph.D. Thesis, hep-ph/921155

$$\Psi(k_i) = \frac{N}{(M_0^2 + \beta^2)^{\gamma}}$$

$$\Psi(k_i) = \frac{N}{(M_0^2 + \beta^2)^{\gamma}} \qquad M_0 = \sum_{i=1}^{3} \sqrt{m_i^2 + \vec{k}_i^2}$$

N: normalization constant

 β , γ parameters fitted to anomalous magnetic moments of the nucleon

• spin-structure:

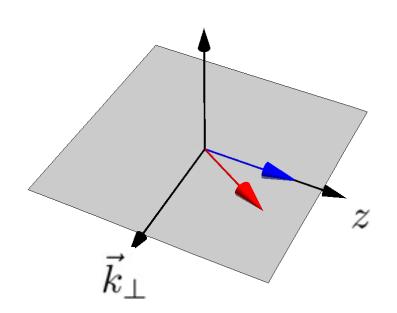
$$q_{\lambda}^{LC}(k) = D_{\lambda s}^{(1/2)*} q_s^C(k)$$

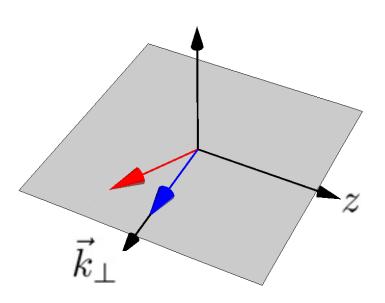
$$q_{\lambda}^{LC}(k) = D_{\lambda s}^{(1/2)*} q_{s}^{C}(k)$$
 $D_{\lambda s}^{(1/2)*}(k) = \frac{1}{|\vec{K}|} \begin{pmatrix} K_{z} & K_{L} \\ -K_{R} & K_{z} \end{pmatrix}$

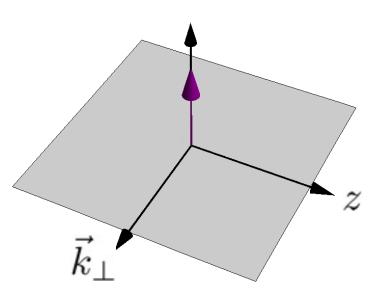
non-interacting quarks \longrightarrow $K_z = m + x \mathcal{M}_0$ $\vec{K}_\perp = \vec{k}_\perp$ (Melosh rotation)

$$K_z = m + x\mathcal{M}_0$$

$$\vec{K}_{\perp} = \vec{k}_{\perp}$$







• SU(6) symmetry

Light-Front Constituent Quark Model

momentum-space wf

Schlumpf, Ph.D. Thesis, hep-ph/921155

$$\Psi(k_i) = \frac{N}{(M_0^2 + \beta^2)^{\gamma}} \qquad M_0 = \sum_i^3 \sqrt{m_i^2 + \vec{k}_i^2}$$

$$M_0 = \sum_{i=1}^{3} \sqrt{m_i^2 + \vec{k}_i^2}$$

N: normalization constant

 β , γ parameters fitted to anomalous magnetic moments of the nucleon

• spin-structure:

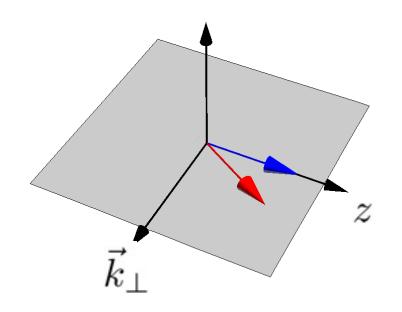
$$q_{\lambda}^{LC}(k) = D_{\lambda s}^{(1/2)*} q_s^C(k)$$

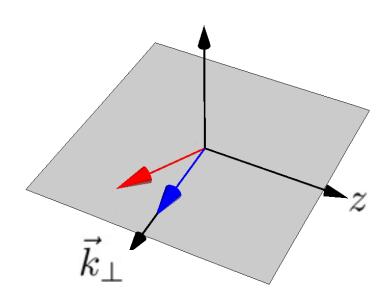
$$q_{\lambda}^{LC}(k) = D_{\lambda s}^{(1/2)*} q_{s}^{C}(k)$$
 $D_{\lambda s}^{(1/2)*}(k) = \frac{1}{|\vec{K}|} \begin{pmatrix} K_{z} & K_{L} \\ -K_{R} & K_{z} \end{pmatrix}$

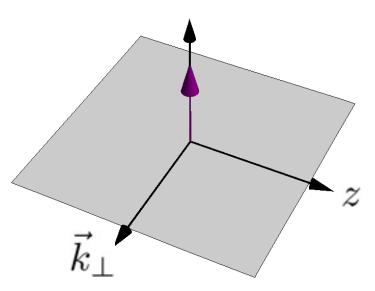
non-interacting quarks \longrightarrow $K_z=m+x\mathcal{M}_0$ $\vec{K}_\perp=\vec{k}_\perp$ (Melosh rotation)

$$K_z = m + x$$

$$\vec{K}_{\perp} = \vec{k}_{\perp}$$







• SU(6) symmetry

Applications of the model to:

GPDs and Form Factors: BP, Boffi, Traini (2003)-(2005);

TMDs: BP, Cazzaniga, Boffi (2008); BP, Yuan (2010);

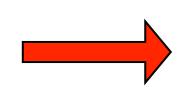
Azimuthal Asymmetries: Schweitzer, BP, Boffi, Efremov (2009)

Quark Wigner Distributions

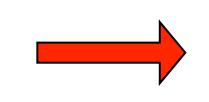
Twist-2:
$$\Gamma_{\text{twist-2}} = \gamma^+, \, \gamma^+ \gamma_5, \, i\sigma^{j+} \gamma_5$$

quark polarization:

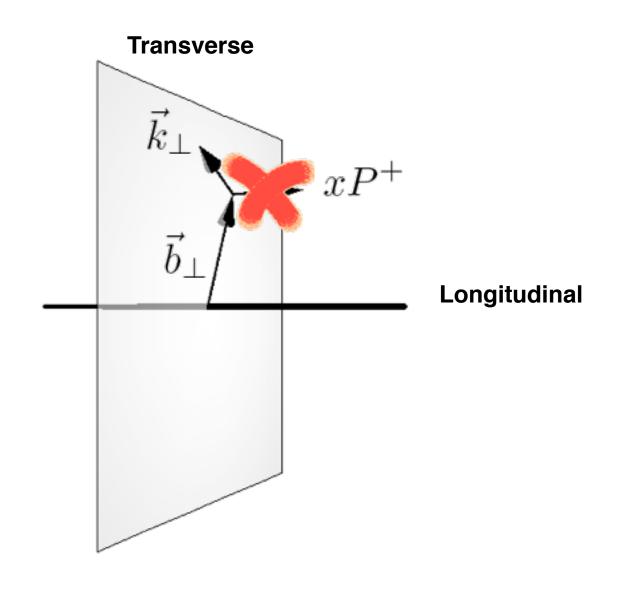
★ Nucleon polarization: **U**



16 complex **GTMDs**

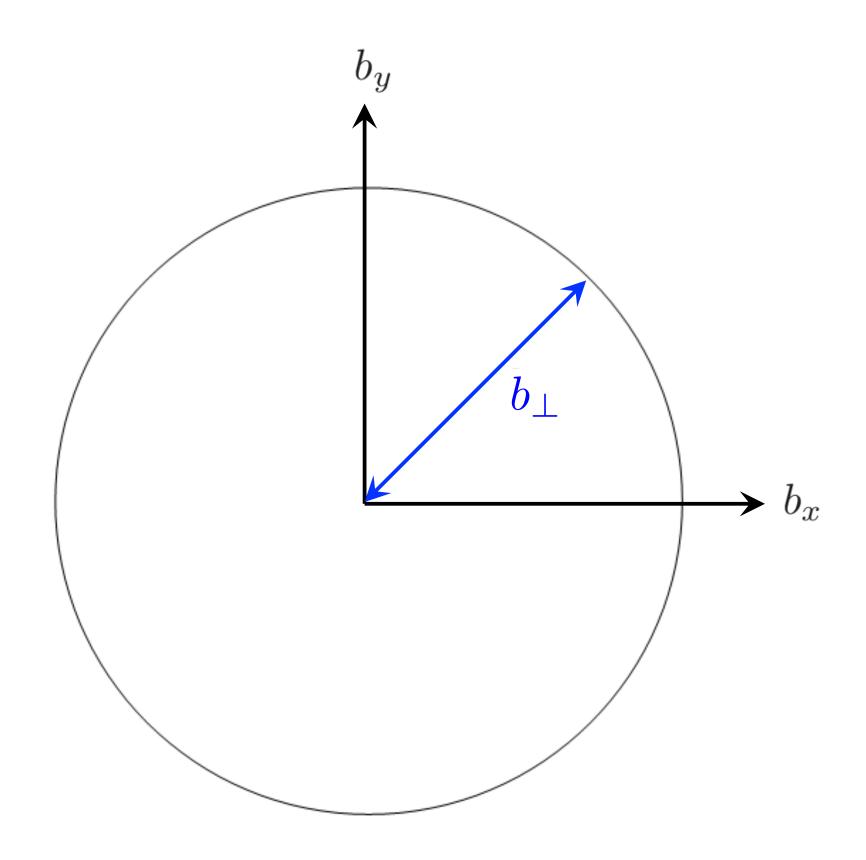


32 real Wigner Distributions

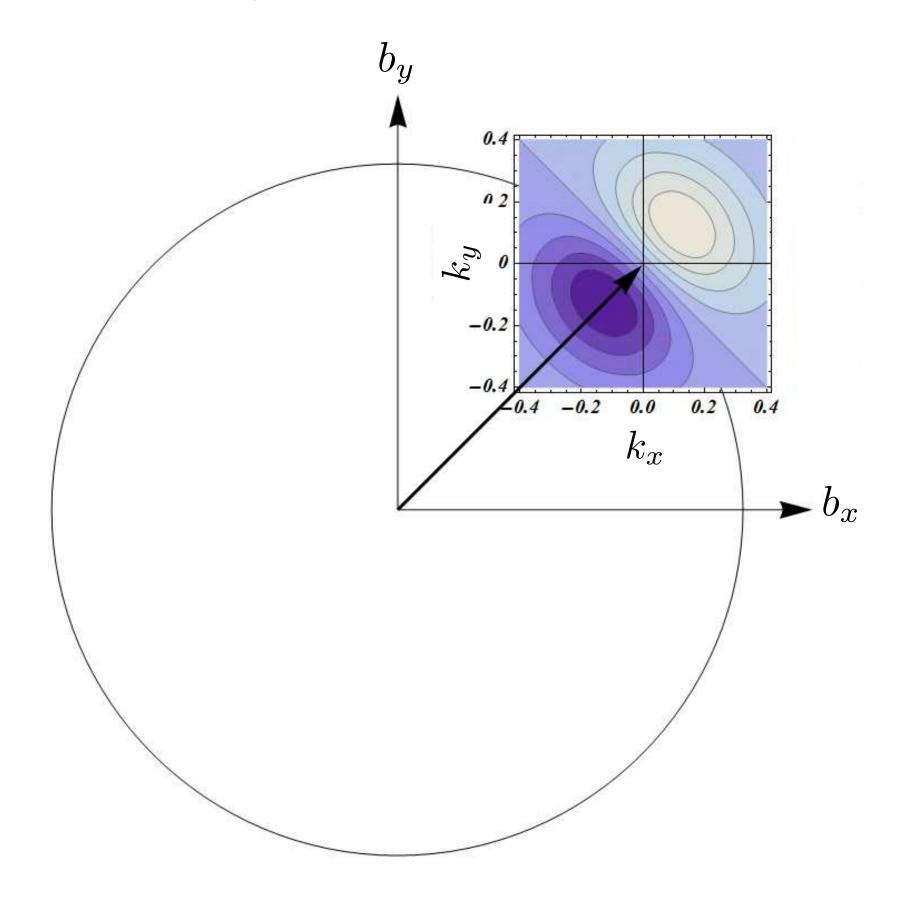


Transverse Phase-Space distributions

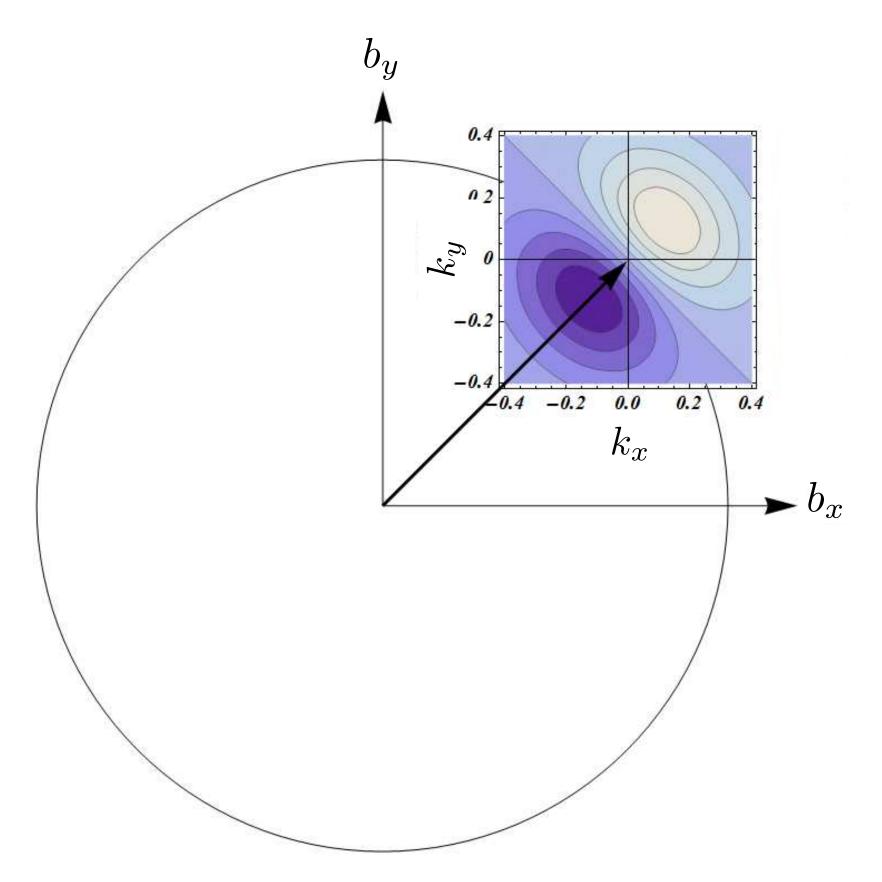
$$\rho_X(\vec{k}_\perp, \vec{b}_\perp) = \int dx \, \rho_X(x, \vec{k}_\perp, \vec{b}_\perp) \qquad X = UU, \, UL, \, UT, \, LU, \, \dots$$



$$\rho_X(\vec{k}_{\perp}|\vec{b}_{\perp}) = \int dx \, \rho_X(x, \vec{k}_{\perp}, \vec{b}_{\perp}; \hat{P} = \vec{e}_z, \eta = +1)|_{\vec{b}_{\perp} \text{ fixed}}$$



$$\rho_X(\vec{k}_{\perp}|\vec{b}_{\perp}) = \int dx \, \rho_X(x, \vec{k}_{\perp}, \vec{b}_{\perp}; \hat{P} = \vec{e}_z, \eta = +1)|_{\vec{b}_{\perp} \text{ fixed}}$$



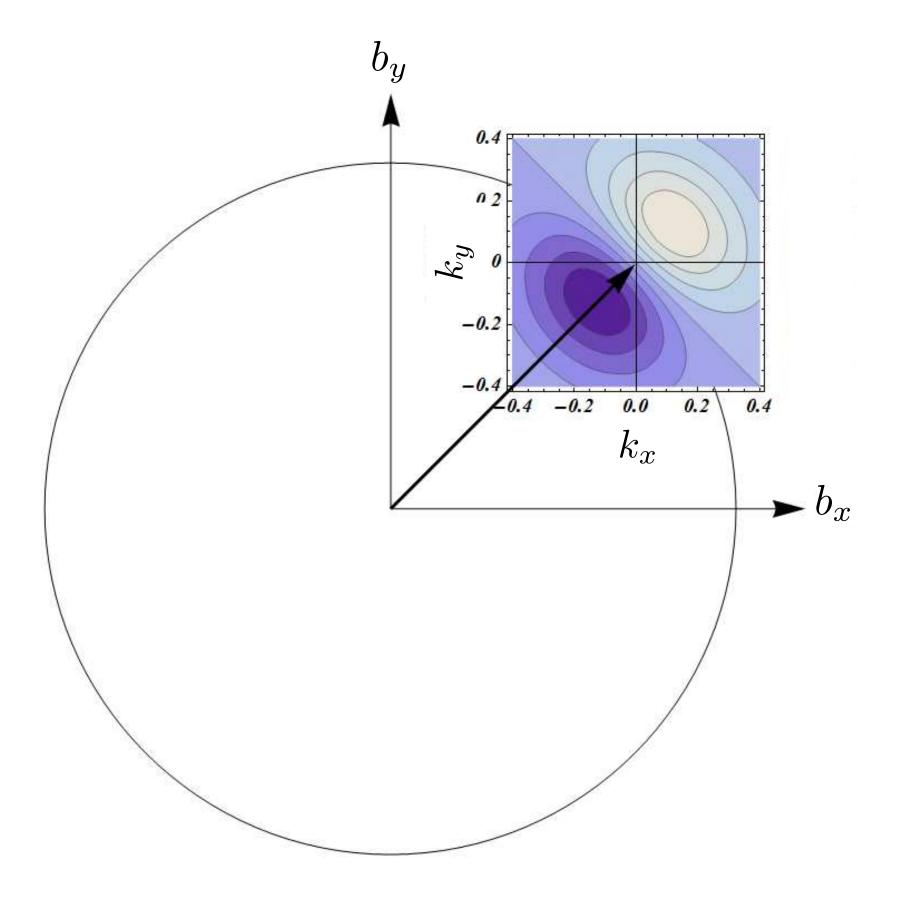
Multipole decomposition

$$\rho_X = \sum_{m_k, m_b} \rho_X^{(m_k, m_b)}$$

from parity and time-reversal properties

$$\vec{a}_{\mathsf{P}} = -c_{\mathsf{P}}\vec{a} \qquad \times_{\mathsf{P}} = c_{\mathsf{P}} \times \vec{a}$$
 $\vec{a}_{\mathsf{T}} = c_{\mathsf{T}}\vec{a} \qquad \times_{\mathsf{T}} = c_{\mathsf{T}} \times \vec{a}$

$$\rho_X(\vec{k}_{\perp}|\vec{b}_{\perp}) = \int dx \, \rho_X(x, \vec{k}_{\perp}, \vec{b}_{\perp}; \hat{P} = \vec{e}_z, \eta = +1)|_{\vec{b}_{\perp} \text{ fixed}}$$



Multipole decomposition

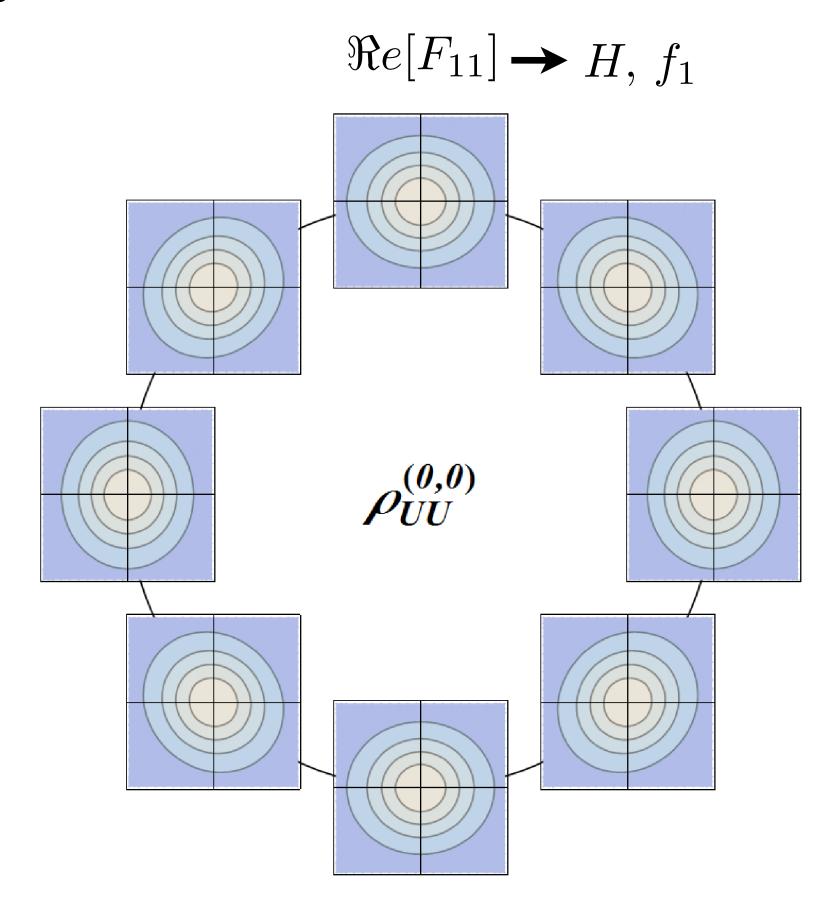
$$\rho_X = \sum_{m_k, m_b} \rho_X^{(m_k, m_b)}$$

from parity and time-reversal properties

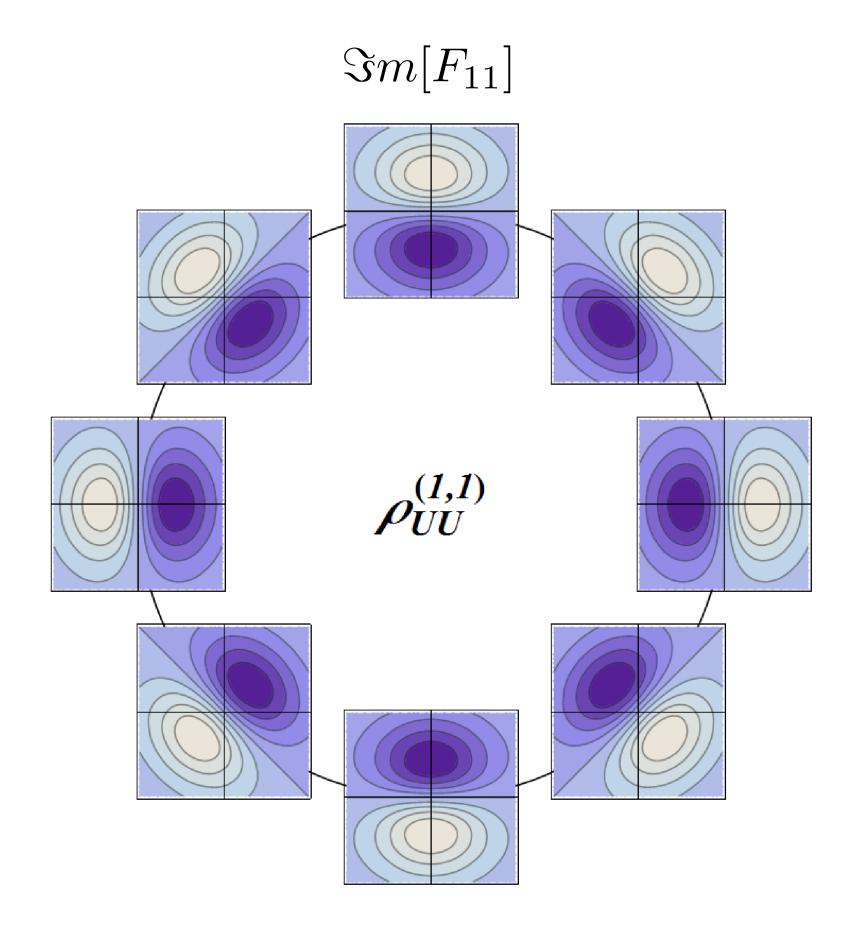
$$\vec{a}_{\mathsf{P}} = -c_{\mathsf{P}}\vec{a} \qquad \times_{\mathsf{P}} = c_{\mathsf{P}} \times \vec{a}$$
 $\vec{a}_{\mathsf{T}} = c_{\mathsf{T}}\vec{a} \qquad \times_{\mathsf{T}} = c_{\mathsf{T}} \times \vec{a}$

$$\rho_X = \rho_X^e + \rho_X^o$$

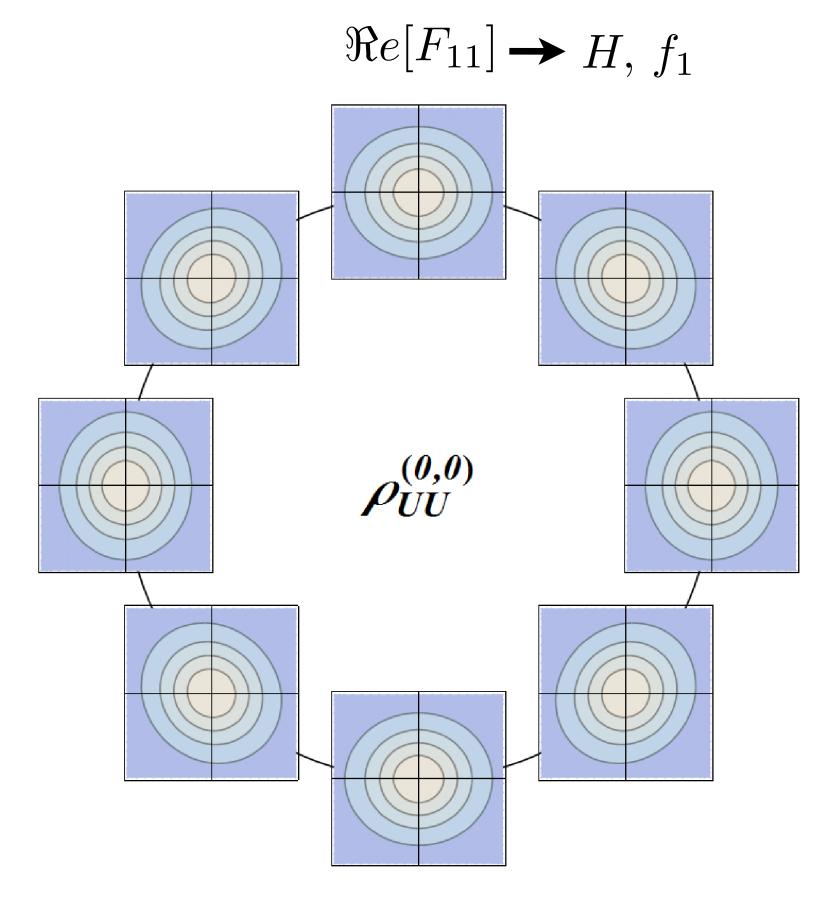
$$\downarrow \qquad \downarrow$$
T-even T-odd



naive time-reversal even

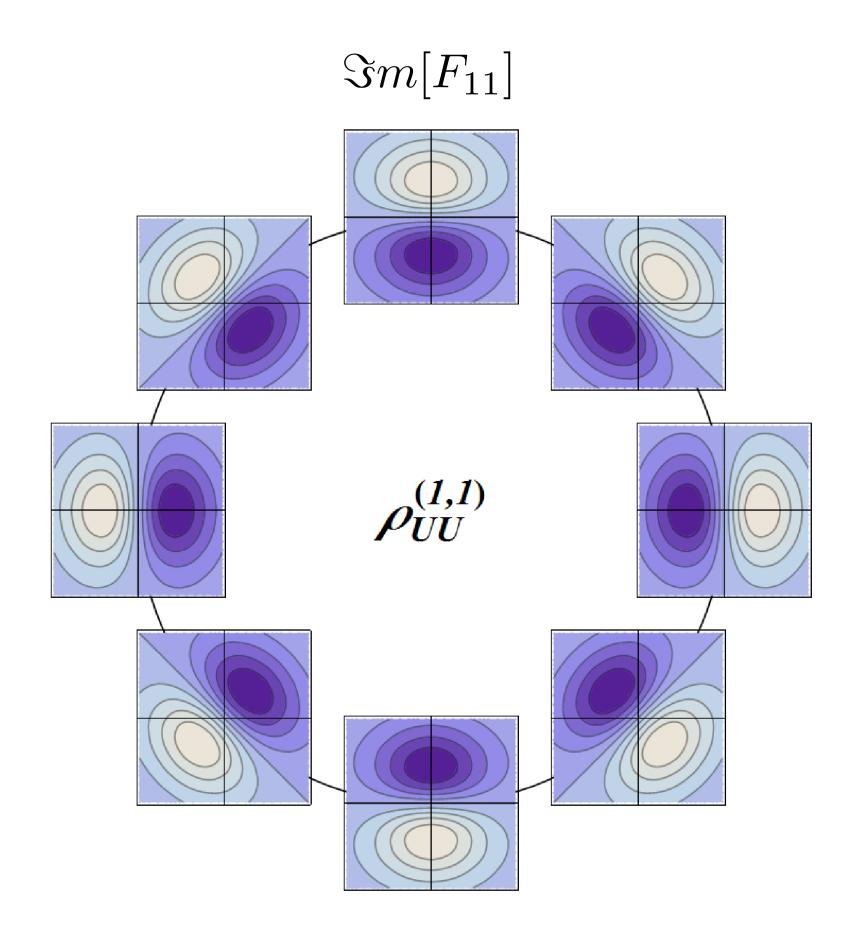


naive time-reversal odd

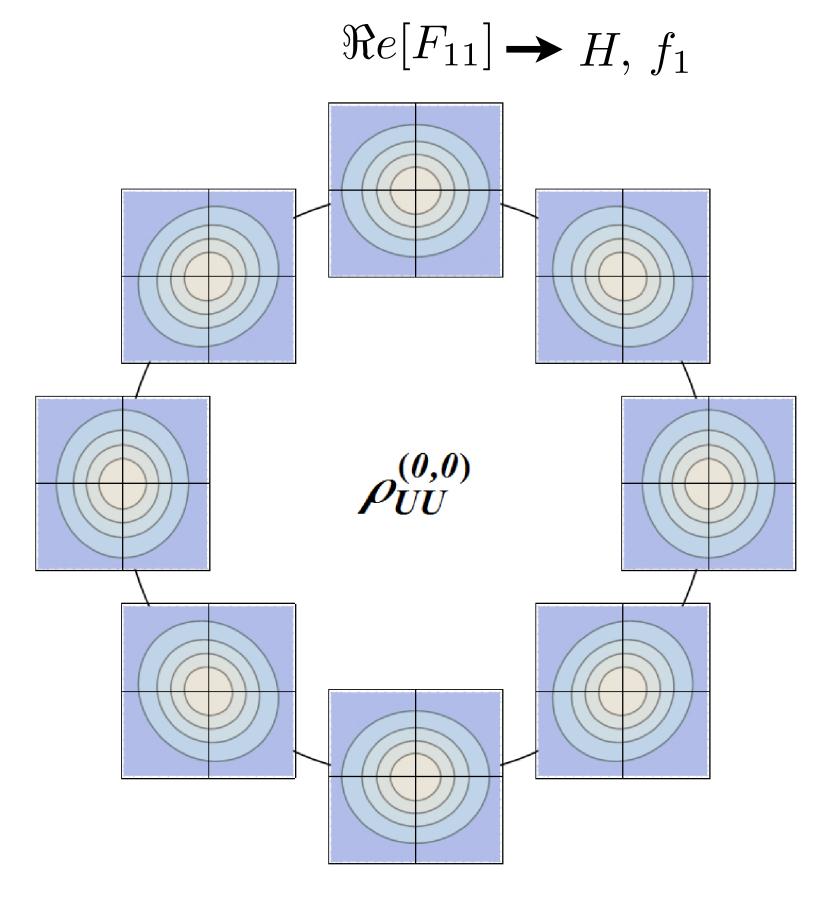


naive time-reversal even

polar flow $(\vec{k}_{\perp} \perp \vec{b}_{\perp})$ preferred over radial flow $(\vec{k}_{\perp} \parallel \vec{b}_{\perp})$



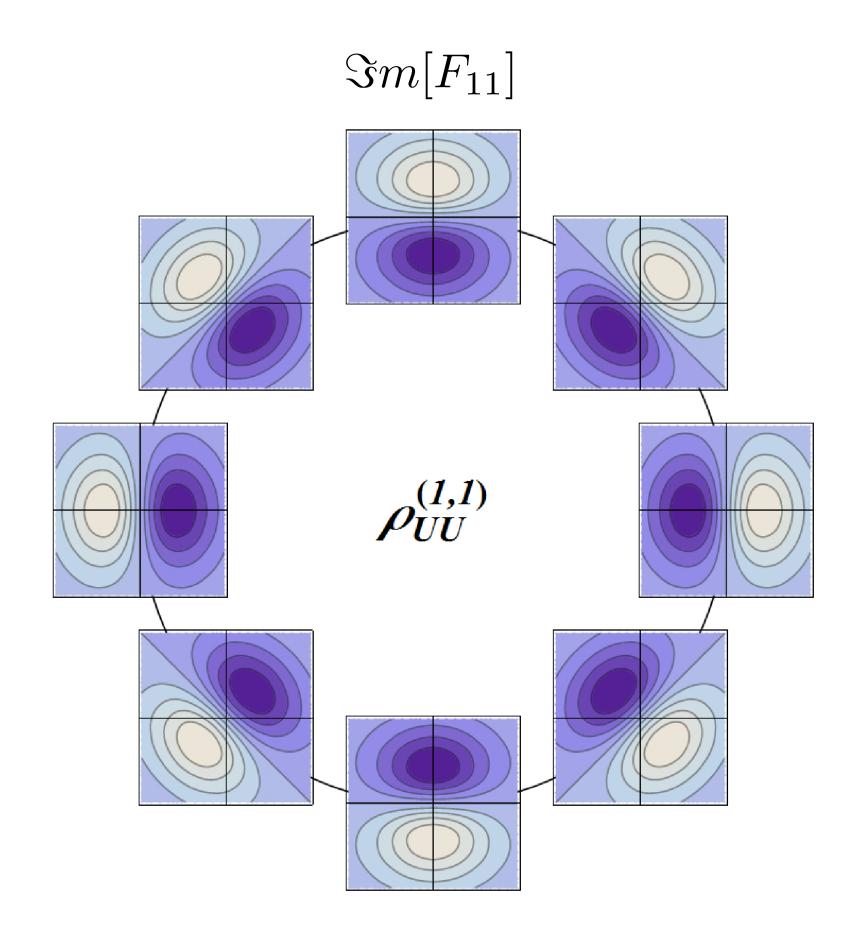
naive time-reversal odd



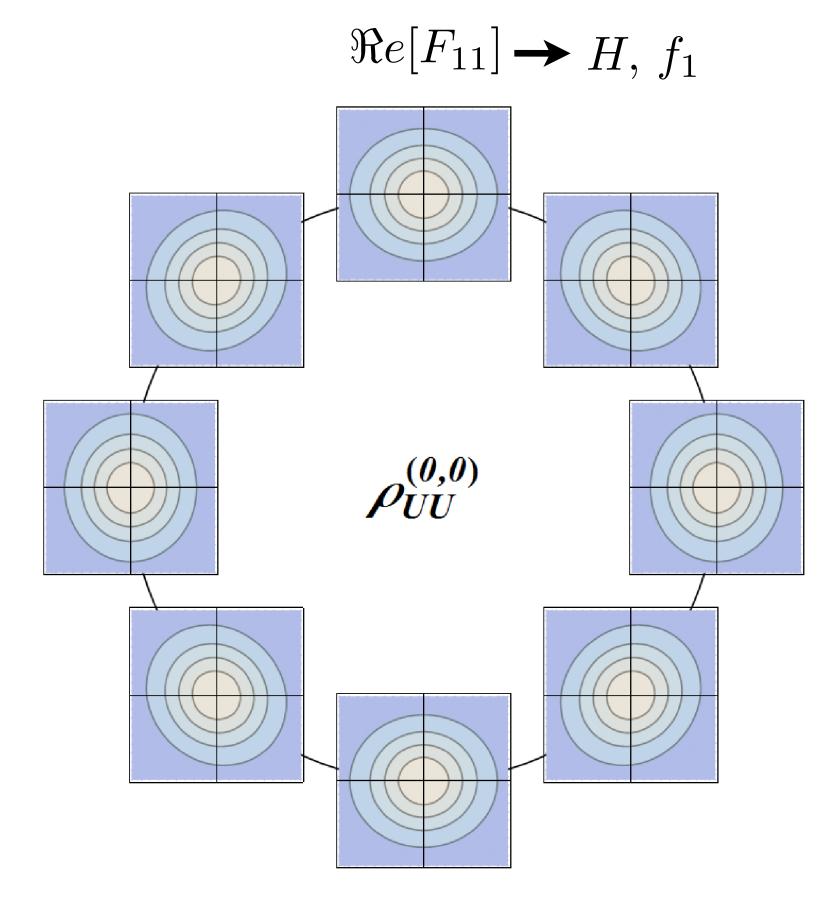
naive time-reversal even

polar flow $(\vec{k}_{\perp} \perp \vec{b}_{\perp})$ preferred over radial flow $(\vec{k}_{\perp} \parallel \vec{b}_{\perp})$

bottom-up symmetry → no net OAM



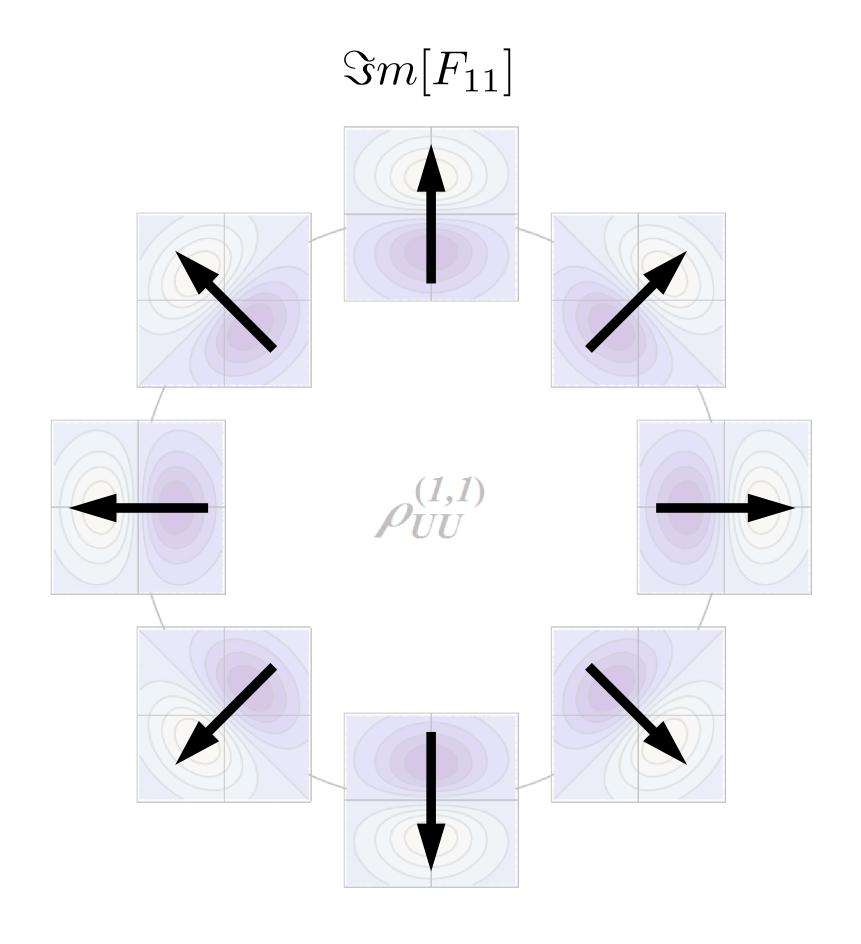
naive time-reversal odd



naive time-reversal even

polar flow $(\vec{k}_{\perp} \perp \vec{b}_{\perp})$ preferred over radial flow $(\vec{k}_{\perp} \parallel \vec{b}_{\perp})$

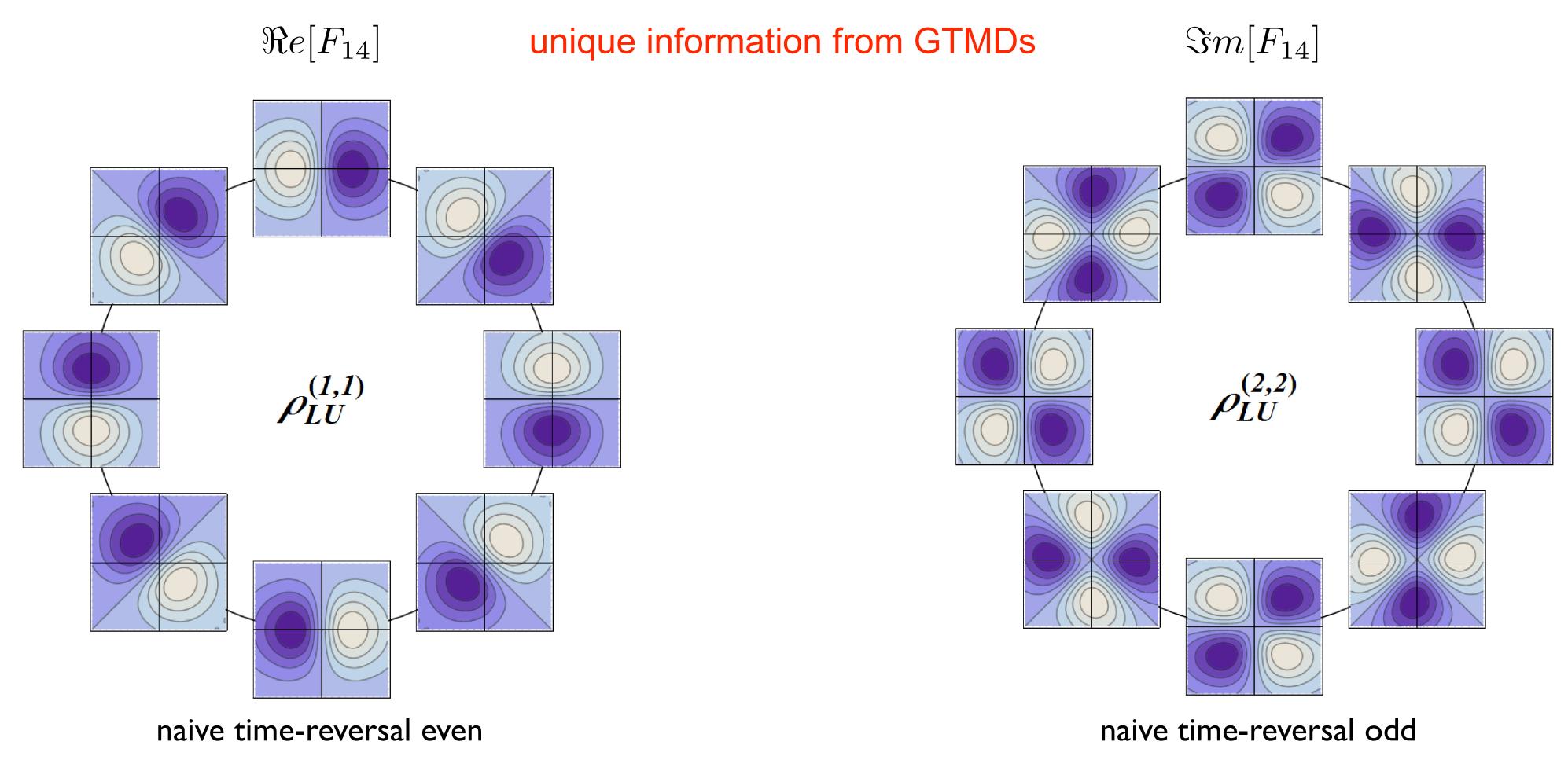
bottom-up symmetry → no net OAM



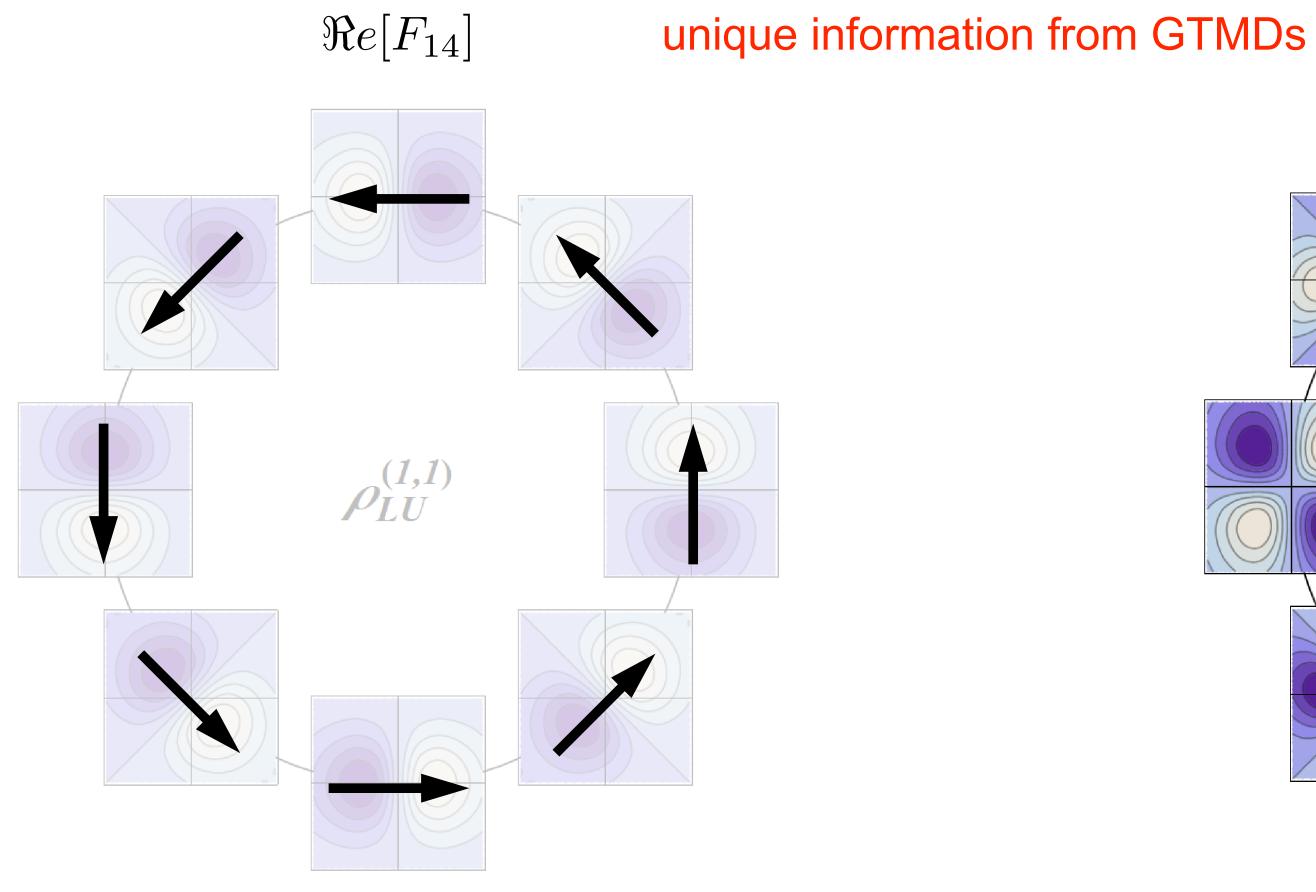
naive time-reversal odd

net radial flow $(\vec{k}_{\perp} \parallel \vec{b}_{\perp})$ due to initial/final state interactions

Unpolarized quarks in Longitudinally pol. proton



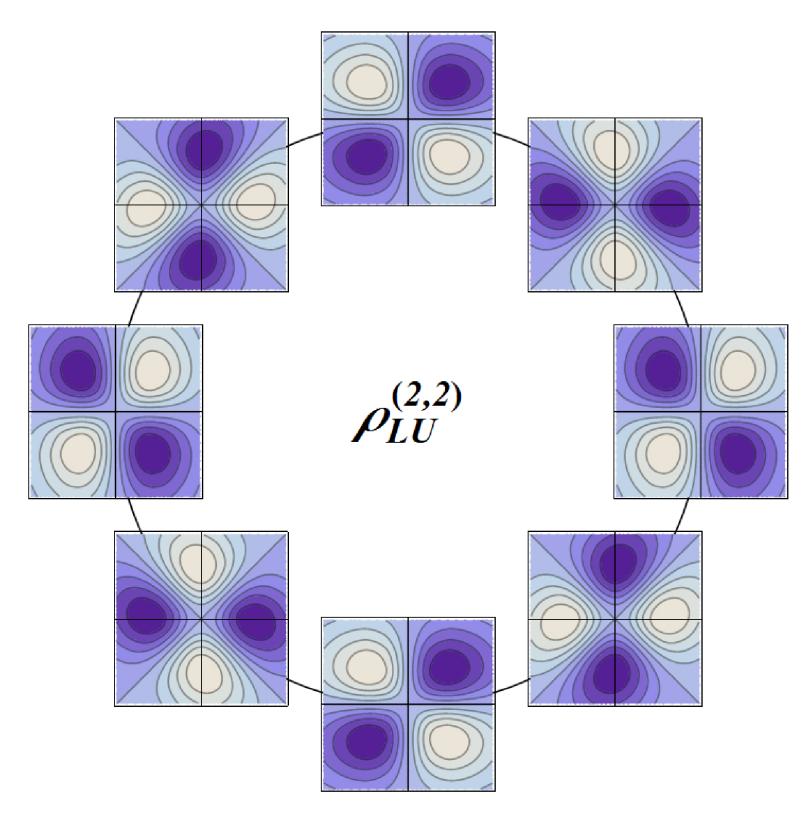
Unpolarized quarks in Longitudinally pol. proton



naive time-reversal even

$$\propto S_z(\vec{b}_{\perp} \times \vec{k}_{\perp})_z$$

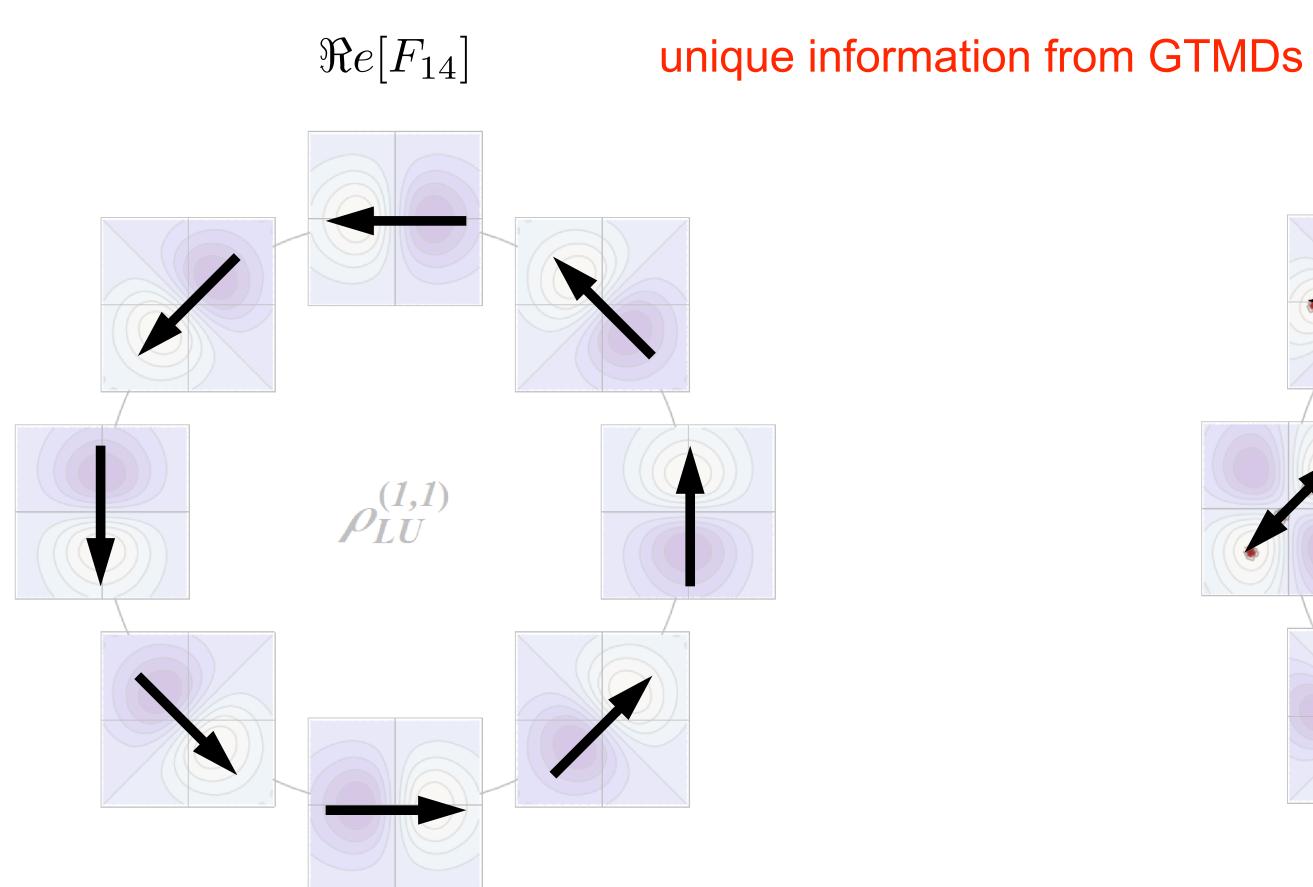
orbital flow \longrightarrow net OAM correlated with S_z



 $\Im m[F_{14}]$

naive time-reversal odd

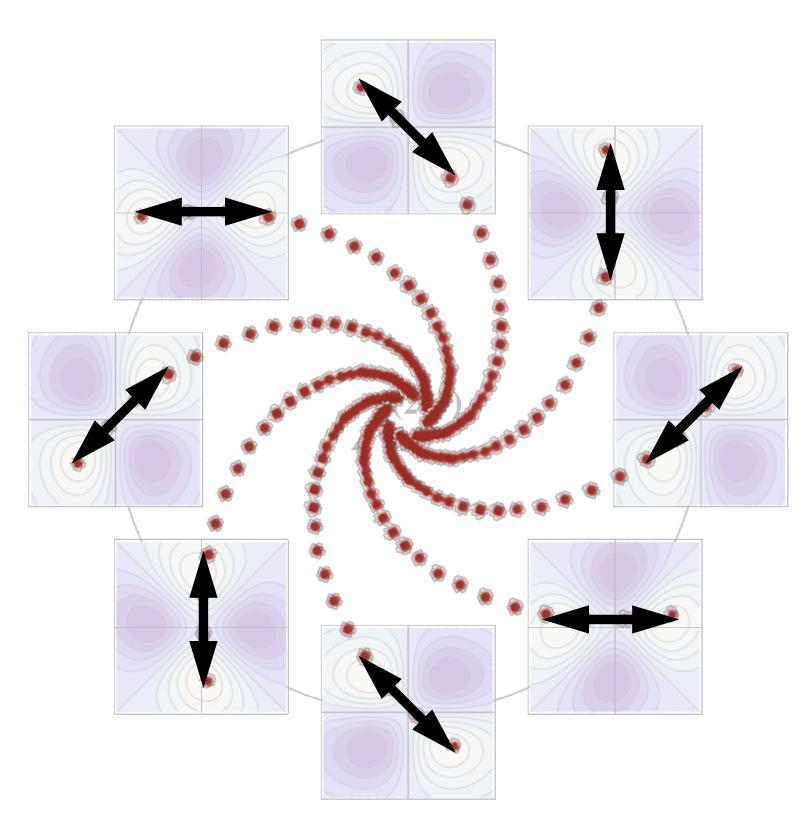
Unpolarized quarks in Longitudinally pol. proton



naive time-reversal even

$$\propto S_z(\vec{b}_{\perp} \times \vec{k}_{\perp})_z$$

orbital flow \longrightarrow net OAM correlated with S_z



 $\Im m[F_{14}]$

naive time-reversal odd

$$\propto S_z (\vec{b}_\perp \times \vec{k}_\perp)_z \, (\vec{b}_\perp \cdot \vec{k}_\perp)$$
 spiral flow correlated with S_z with no-net quark flow

Quark Orbital Angular Momentum

$$\ell_z^q = \int \mathrm{d}x \, \mathrm{d}^2 \vec{k}_\perp \mathrm{d}^2 \vec{b}_\perp (\vec{b}_\perp \times \vec{k}_\perp) \rho_{LU}^q (\vec{b}_\perp, \vec{k}_\perp, x)$$

Wigner distribution for Unpolarized quark in a Longitudinally pol. nucleon

Quark Orbital Angular Momentum

$$\ell_z^q = \int dx \, d^2 \vec{k}_\perp d^2 \vec{b}_\perp (\vec{b}_\perp \times \vec{k}_\perp) \rho_{LU}^q (\vec{b}_\perp, \vec{k}_\perp, x)$$

$$= \int d^2 \vec{b}_\perp \vec{b}_\perp \times \langle \vec{k}_\perp^q \rangle \longrightarrow \langle \vec{k}_\perp^q \rangle = \int dx \, d\vec{k}_\perp \, \vec{k}_\perp \rho_{LU}^q (\vec{b}_\perp, \vec{k}_\perp, x)$$

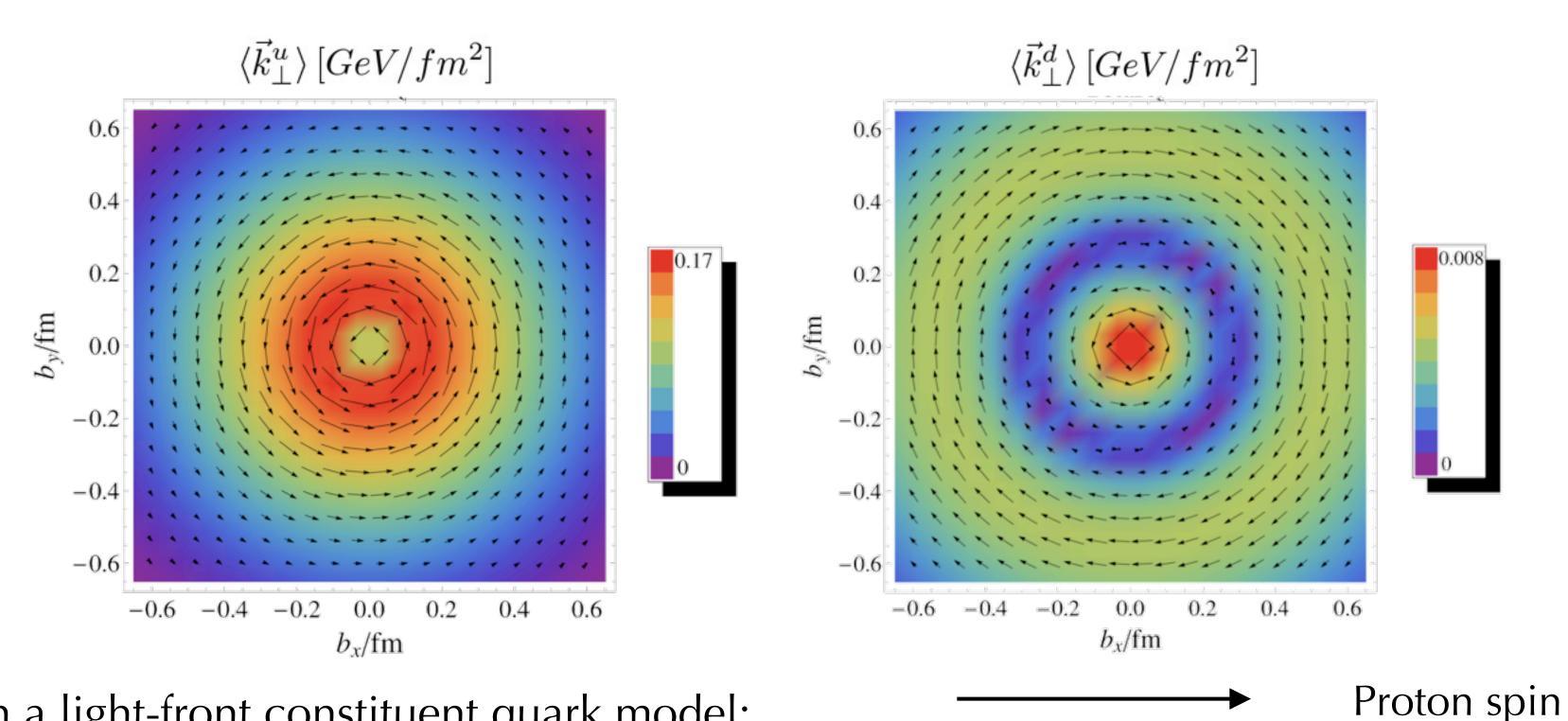
Quark Orbital Angular Momentum

$$\ell_z^q = \int dx \, d^2 \vec{k}_\perp d^2 \vec{b}_\perp (\vec{b}_\perp \times \vec{k}_\perp) \rho_{LU}^q (\vec{b}_\perp, \vec{k}_\perp, x)$$

$$= \int d^2 \vec{b}_\perp \vec{b}_\perp \times \langle \vec{k}_\perp^q \rangle \longrightarrow \langle \vec{k}_\perp^q \rangle = \int dx \, d\vec{k}_\perp \, \vec{k}_\perp \rho_{LU}^q (\vec{b}_\perp, \vec{k}_\perp, x)$$

u-quark OAM

d-quark OAM

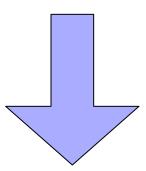


Results in a light-front constituent quark model:

Lorcé, BP, PRD 84 (2011) 014015 Lorcé, BP, Xiong, Yuan, PRD 85 (2012) 114006

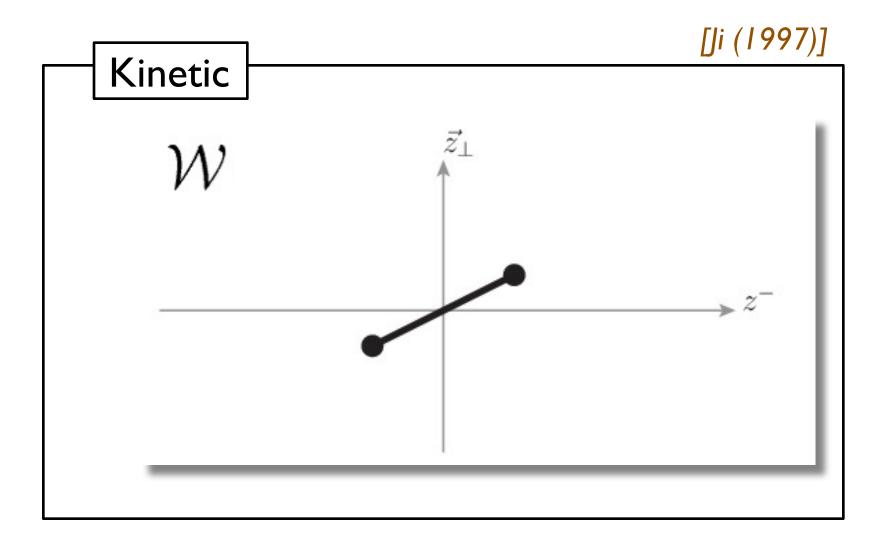
$$\ell_z^q = \int \mathrm{d}x \mathrm{d}^2 \vec{k}_\perp \mathrm{d}^2 \vec{b}_\perp (\vec{b}_\perp \times \vec{k}_\perp) \rho_{LU}(\vec{b}_\perp, \vec{k}_\perp, x)$$

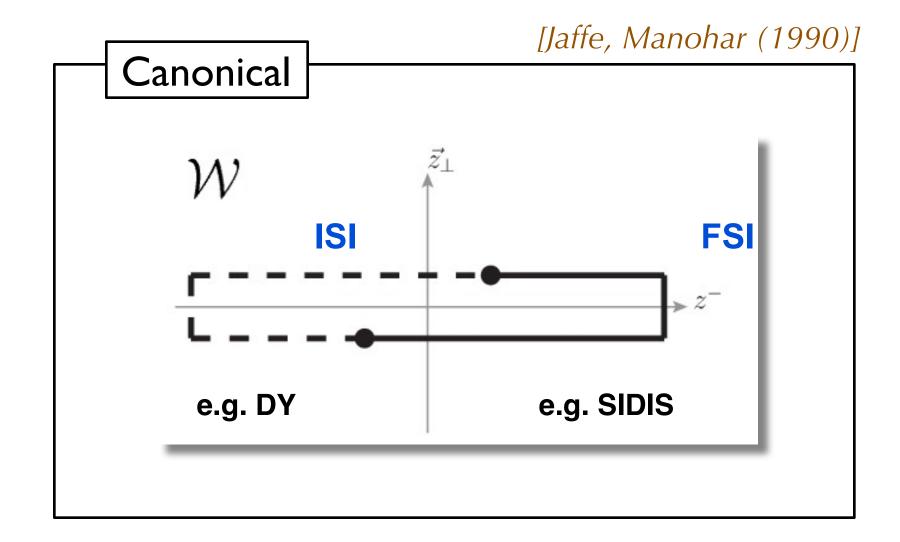
Light-cone gauge $A^+=0$ not gauge invariant, but with simple partonic interpretation



Gauge-invariant extension

$$\rho_{LU} \to \rho_{LU}^{\mathcal{W}}$$





[Ji, Xiong, Yuan (2012)] [Burkardt (2012)]

difference between the two definitions can be interpreted as the change in the quark OAM as the quark leaves the target in a DIS experiment [M. Burkardt (2013)] [Hatta (2012)]

Angular Correlations

quark polarization

lariza	
00	
cleon	

$ ho_X$	$oldsymbol{U}$	$oldsymbol{L}$	T_x	T_y
$oldsymbol{U}$	$\langle 1 \rangle$	$\langle S_L^q \ell_L^q \rangle$	$\langle S_x^q \ell_x^q \rangle$	$\langle S_y^q \ell_y^q \rangle$
$oldsymbol{L}$	$\langle S_L \ell_L^q \rangle$	$\langle S_L S_L^q angle$	$\langle S_L \ell_L^q S_x^q \ell_x^q \rangle$	$\langle S_L \ell_L^q S_y^q \ell_y^q \rangle$
T_x	$\langle S_x \ell_x^q \rangle$	$\langle S_x \ell_x^q S_L^q \ell_L^q \rangle$	$\langle S_x S_x^q \rangle$	$\langle S_x \ell_x^q S_y^q \ell_y^q \rangle$
T_y	$\langle S_y \ell_y^q \rangle$	$\langle S_y \ell_y^q S_L^q \ell_L^q \rangle$	$\langle S_y \ell_y^q S_x^q \ell_x^q \rangle$	$\langle S_y S_y^q \rangle$

 $\xi = 0$

Angular Correlations

quark polarization

nucleon polarization

			<u> </u>		
	$ ho_X$	$oldsymbol{U}$	$oldsymbol{L}$	T_x	T_y
	U	$\langle 1 \rangle$	$\langle S_L^q \ell_L^q \rangle$	$\langle S_x^q \ell_x^q \rangle$	$\langle S_y^q \ell_y^q \rangle$
	L	$\langle S_L \ell_L^q \rangle$	$\langle S_L S_L^q \rangle$	$\langle S_L \ell_L^q S_x^q \ell_x^q \rangle$	$\langle S_L \ell_L^q S_y^q \ell_y^q \rangle$
-	T_x	$\langle S_x \ell_x^q \rangle$	$\langle S_x \ell_x^q S_L^q \ell_L^q \rangle$	$\langle S_x S_x^q \rangle$	$\langle S_x \ell_x^q S_y^q \ell_y^q \rangle$
	T_y	$\langle S_y \ell_y^q \rangle$	$\langle S_y \ell_y^q S_L^q \ell_L^q \rangle$	$\langle S_y \ell_y^q S_x^q \ell_x^q \rangle$	$\langle S_y S_y^q \rangle$

حر		\cap
ح	=	U
7		_

GPD	U	L	T
$oldsymbol{U}$	H		\mathcal{E}_T
L		$ ilde{H}$	$ ilde{E}_T$
T	E	$ ilde{E}$	$H_T, \; ilde{ ilde{H}_T}$

TMD	$oldsymbol{U}$	L	T
$oldsymbol{U}$	f_1		h_1^\perp
$oldsymbol{L}$		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

the distributions in **red** vanish if there is no quark orbital angular momentum the distributions in **black** survive in the collinear limit

Angular Correlations

quark polarization

ON
Za
polarizati
d
OU
6 C
C

	$ ho_X$	$oldsymbol{U}$	$oldsymbol{L}$	T_x	T_y	
	U	$\langle 1 \rangle$	$\langle S_L^q \ell_L^q \rangle$	$\langle S_x^q \ell_x^q angle$	$\langle S_y^q \ell_y^q \rangle$	
	L	$\langle S_L \ell_L^q \rangle$	$\langle S_L S_L^q \rangle$	$\langle S_L \ell_L^q S_x^q \ell_x^q \rangle$	$\langle S_L \ell_L^q S_y^q \ell_y^q \rangle$	
•	T_x	$\langle S_x \ell_x^q \rangle$	$\langle S_x \ell_x^q S_L^q \ell_L^q \rangle$	$\langle S_x S_x^q \rangle$	$\langle S_x \ell_x^q S_y^q \ell_y^q \rangle$	
	T_y	$\langle S_y \ell_y^q \rangle$	$\langle S_y \ell_y^q S_L^q \ell_L^q \rangle$	$\langle S_y \ell_y^q S_x^q \ell_x^q \rangle$	$\langle S_y S_y^q \rangle$	

حر		\cap
ح	=	U
7		_

GPD	U	L	T
$oldsymbol{U}$	H		\mathcal{E}_T
L		$ ilde{H}$	$ ilde{E}_{T}$
T	E	Ě	$H_T, \ ilde{H}_T$

TMD	$oldsymbol{U}$	L	T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

the distributions in **red** vanish if there is no quark orbital angular momentum the distributions in **black** survive in the collinear limit

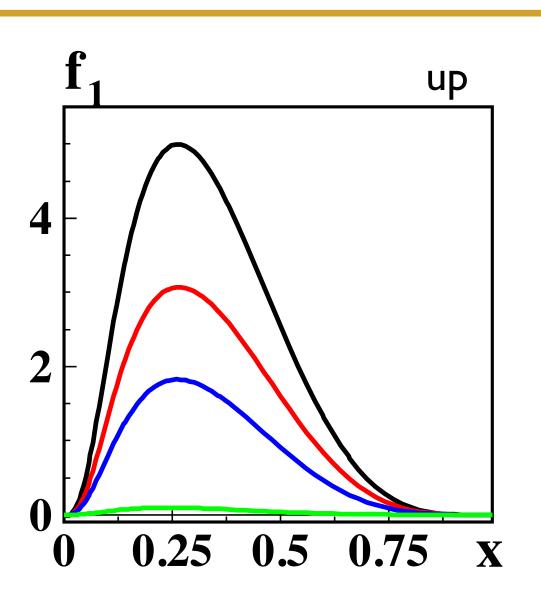
OAM content of TMDs

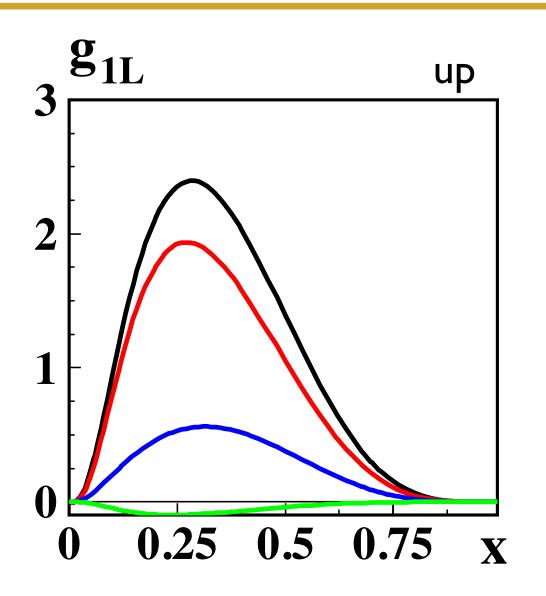
____ TOT

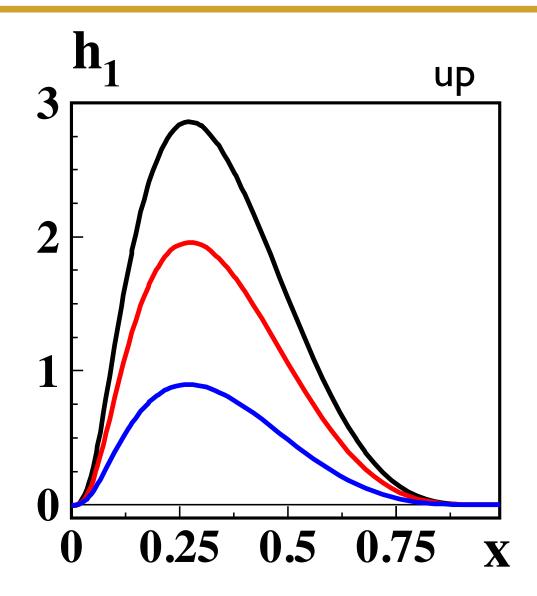
____ S wave

P wave

____ D wave

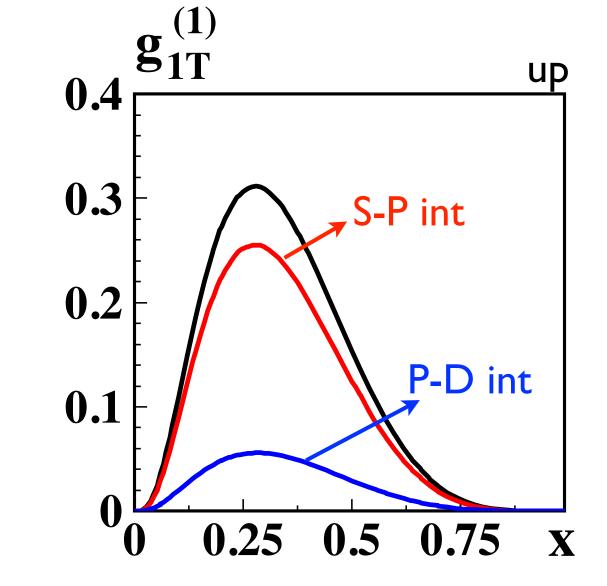


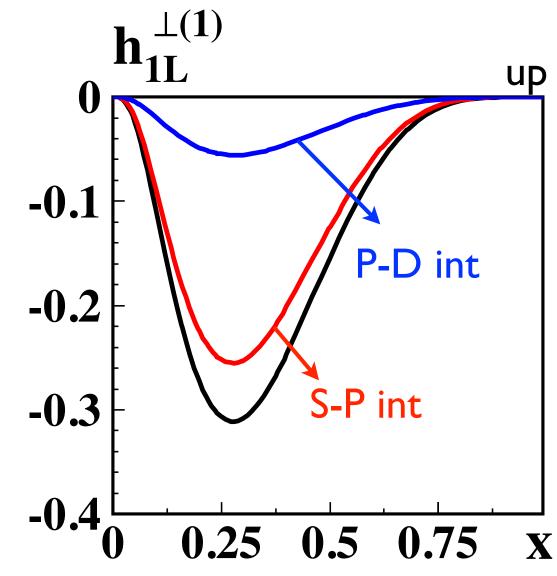


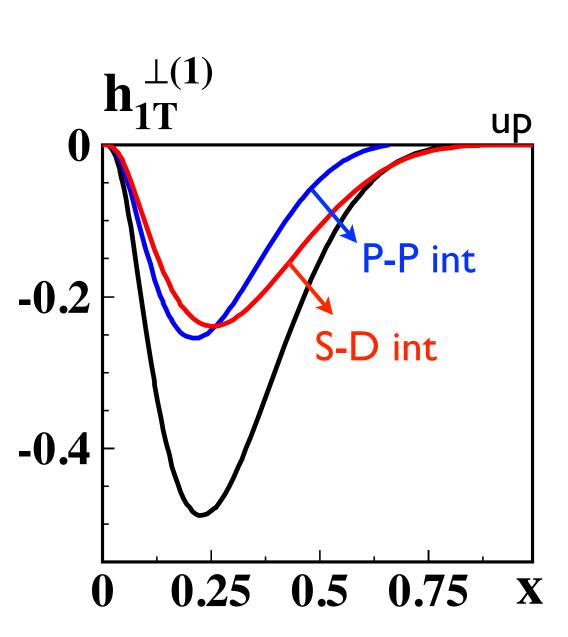


$$j^{(1)}(x) = \int d^2 \vec{k}_{\perp} \frac{k_{\perp}^2}{2M^2} j(x, k_{\perp}^2)$$

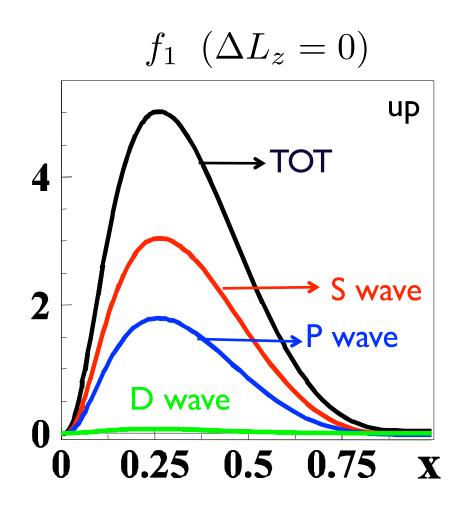
____ TOT

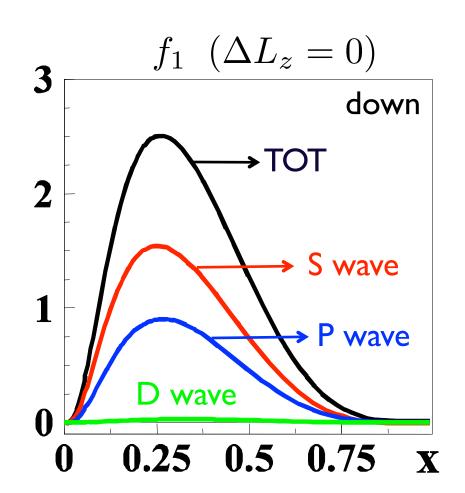




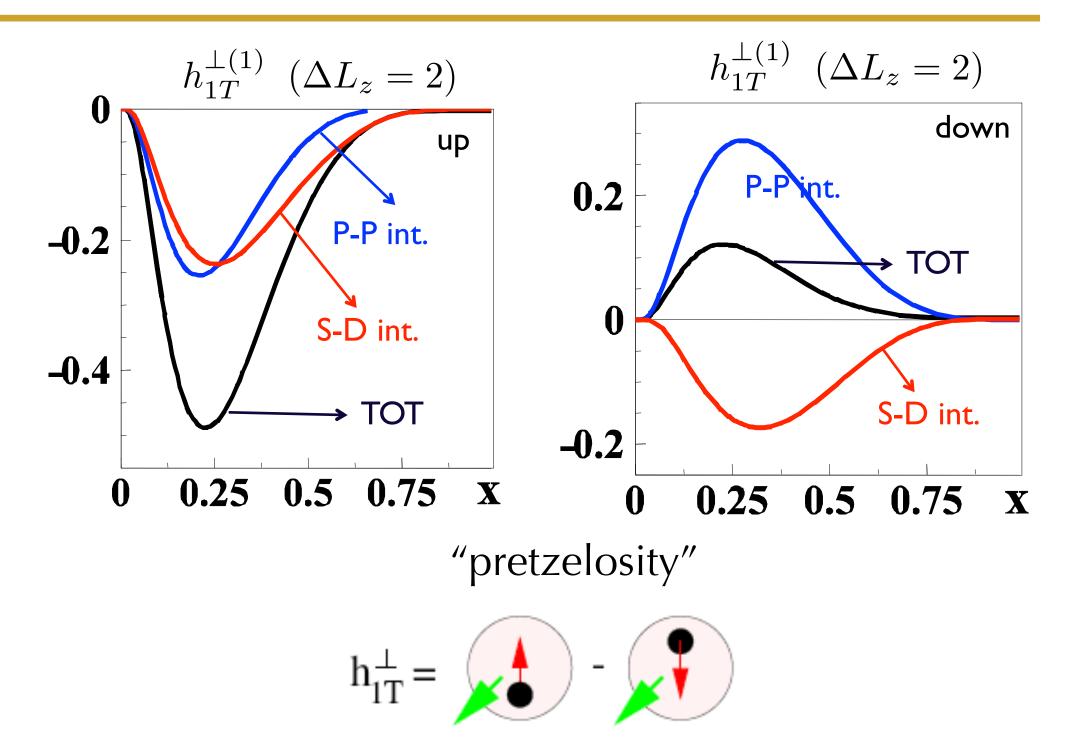


OAM content of TMDs

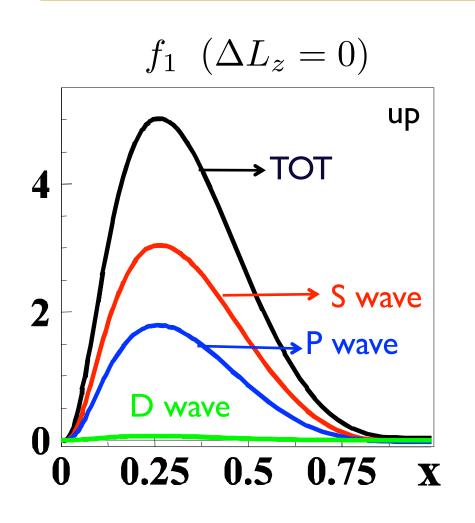


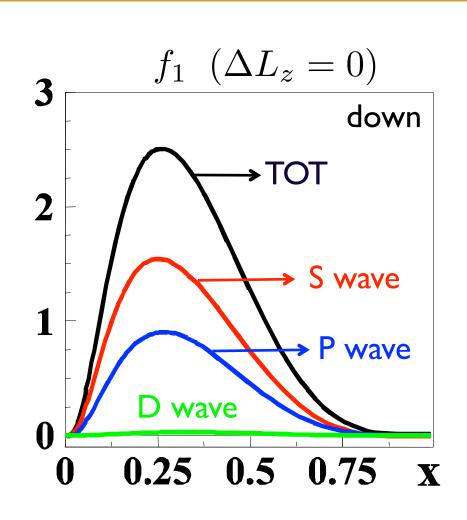


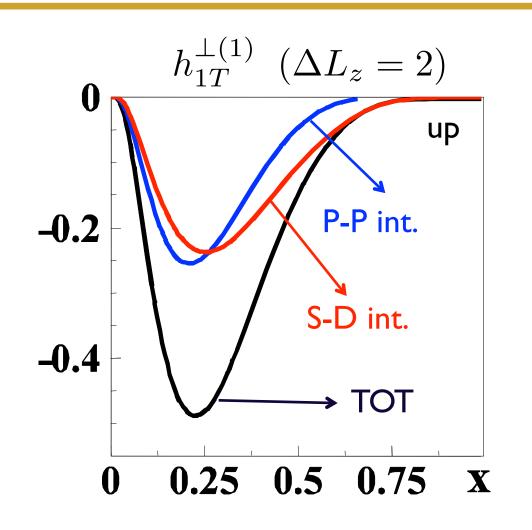
$$f_1 = \bullet$$

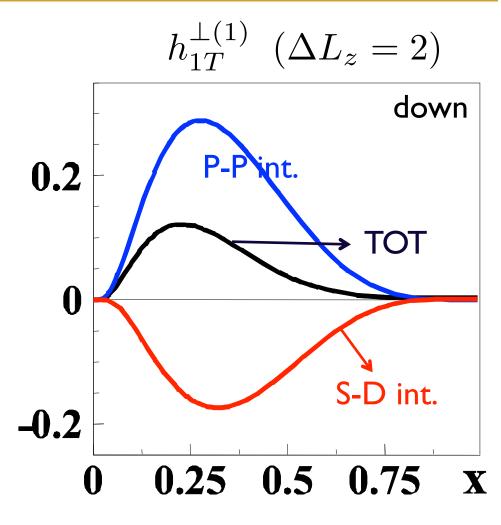


OAM content of TMDs



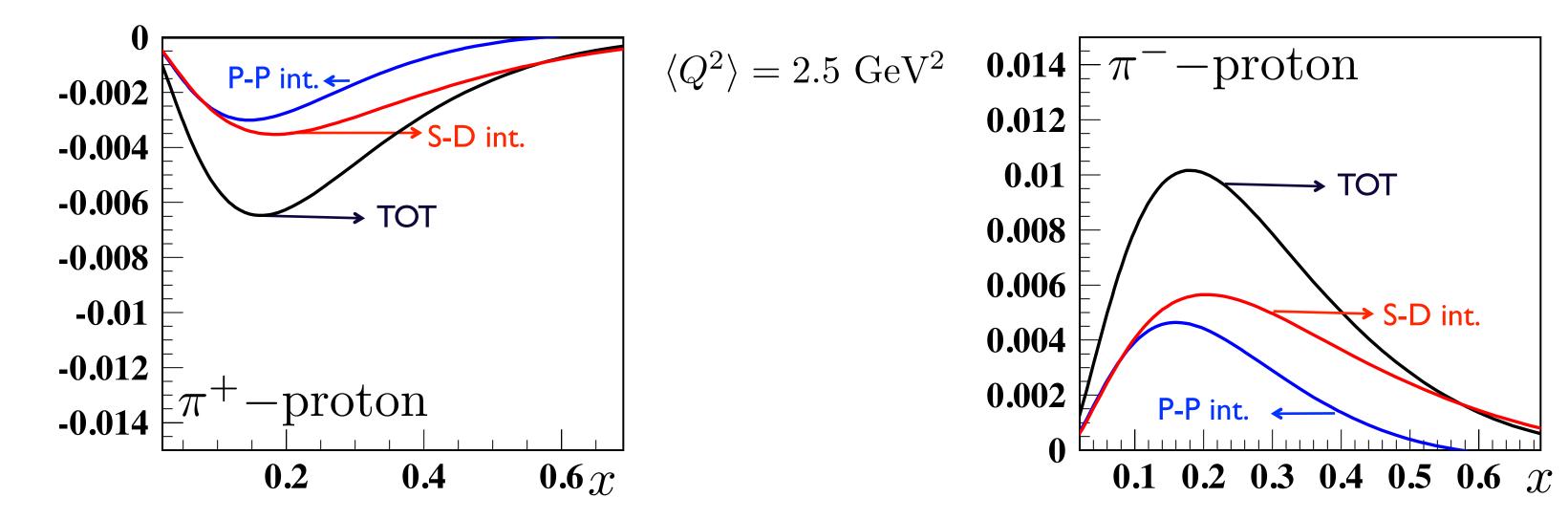






♦ Effects on SIDIS observables

$$A_{UT}^{\sin(3\phi-\phi_S)} \sim \frac{h_{1T}^{\perp} \otimes H_1}{f_1 \otimes D_1}$$



Boffi, Efremov, BP, Schweitzer, PRD79(2009)

Quark OAM from Pretzelosity

$$h_{1T}^{\perp} =$$
 "pretzelosity"

model-dependent relation

$$\mathcal{L}_z = -\int dx d^2 \vec{k}_{\perp} \frac{k_{\perp}^2}{2M^2} h_{1T}^{\perp}(x, k_{\perp}^2)$$

first derived in LF-diquark model and bag model

[She, Zhu, Ma, 2009; Avakian, Efremov, Schweitzer, Yuan, 2010]

Quark OAM from Pretzelosity

$$h_{1T}^{\perp} =$$
 "pretzelosity"

model-dependent relation

$$\mathcal{L}_z = -\int dx d^2 \vec{k}_{\perp} \frac{k_{\perp}^2}{2M^2} h_{1T}^{\perp}(x, k_{\perp}^2)$$

first derived in LF-diquark model and bag model

[She, Zhu, Ma, 2009; Avakian, Efremov, Schweitzer, Yuan, 2010]

$$\mathcal{L}_z$$
 h_{1T}^\perp and charge even chiral odd and charge odd

chiral even and charge even

$$\Delta L_z = 0 \qquad |\Delta L_z| = 2$$

no operator identity relation at level of matrix elements of operators

Quark OAM from Pretzelosity

$$h_{1T}^{\perp} =$$
 "pretzelosity"

model-dependent relation

$$\mathcal{L}_z = -\int dx d^2 \vec{k}_{\perp} \frac{k_{\perp}^2}{2M^2} h_{1T}^{\perp}(x, k_{\perp}^2)$$

first derived in LF-diquark model and bag model

[She, Zhu, Ma, 2009; Avakian, Efremov, Schweitzer, Yuan, 2010]

$$\mathcal{L}_z$$

chiral even and charge even

$$\Delta L_z = 0$$

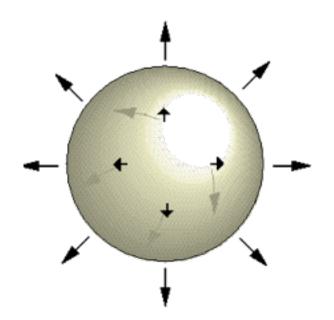
$$h_{1T}^{\perp}$$

chiral odd and charge odd

$$|\Delta L_z| = 2$$

no operator identity relation at level of matrix elements of operators

valid in all quark models with spherical symmetry in the rest frame [Lorcé, BP, PLB (2012)]



Relations among T-even TMDs

[Avakian, Efremov, Schweitzer, Yuan, 2008] [Lorcé, Pasquini, 2011]

*=SU(6)	Linear Relations	Quadratic Relations
Flavor dependent $D^u=rac{2}{3}, D^d=-rac{1}{3}$	$D^1 f_1^q + g_{1L}^q = 2 h_1^q \qquad **$	
Flavor independent	$g_{1T}^{q} = -h_{1L}^{\perp q} \qquad ** \\ g_{1L}^{q} - h_{1}^{q} = \frac{k_{\perp}^{2}}{2M^{2}} h_{1T}^{\perp q} \qquad ** \\ \bullet \bullet$	$2 h_1^q h_{1T}^{\perp q} = -(g_{1T}^q)^2 \qquad \qquad \star \bullet \bullet \bullet$

Bag [Jaffe, Ji 1991); Signal (1997); Barone & al. (2002); Avakian & al., (2008-2010)]

XQSM [Lorcé, Pasquini, Vanderhaeghen (2011)]

LCQM [Pasquini & al. (2008)]

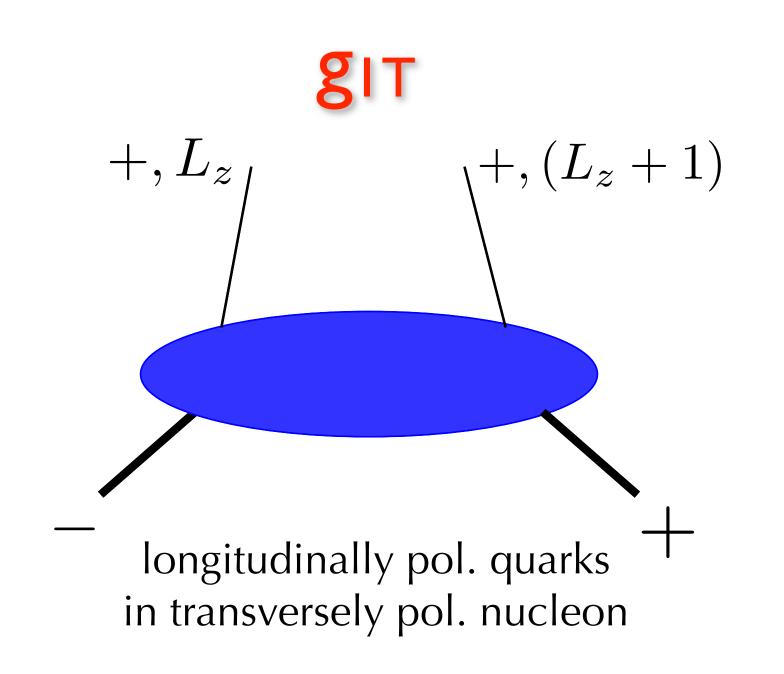
S Diquark [Ma & al. (1996-2009); Jakob & al. (1997); Bacchetta & al. (2008)]

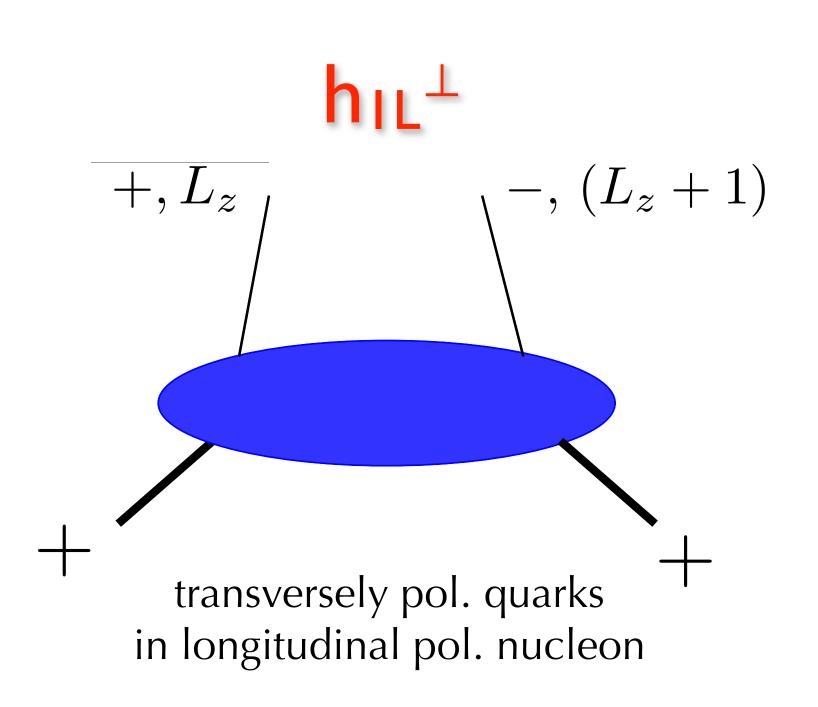
AV Diquark [Ma & al. (1996-2009); Jakob & al. (1997); Bacchetta & al. (2008)]

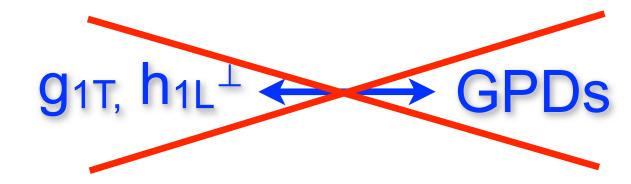
Cov. Parton [Efremov & al. (2009)]

Quark Target [Meissner & al. (2007)]

The Worm-Gear functions







genuine effect of intrinsic transverse momentum of quarks!

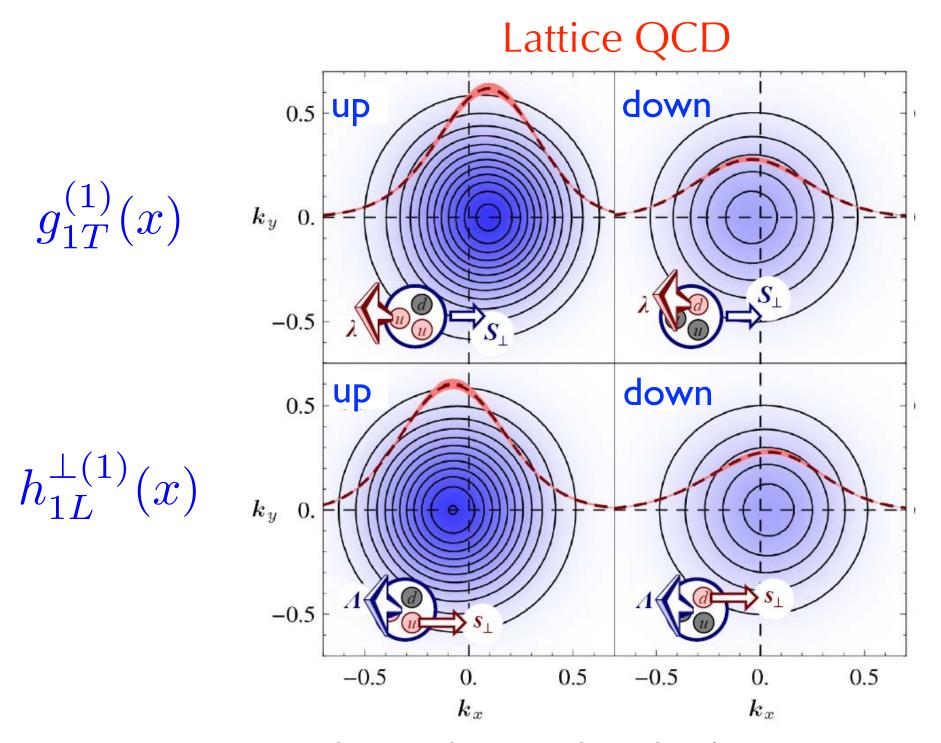
Light-Front Quark Model $\rho \, (\text{fm}^{-2}) > 0.18$ down 0.4 UP < 0.18 0.2 < 0.16 k, (GeV) < 0.14 < 0.12 < 0.1 < 0.08 -0.2 < 0.06 < 0.04 -0.4 < 0.02 $\rho \, (\text{fim}^{-2}) > 0.18$ down 0.4 UD < 0.18 0.2 < 0.16 k, (GeV) < 0.14 < 0.12 < 0.1 < 0.08 -0.2 < 0.06 < 0.04 -0.4 < 0.02 -0.4 -0.2 0.0 k_x (GeV) -0.2 0.0 k_x (GeV) 0.2 0.4

BP, Cazzaniga, Boffi, PRD78 (2008)

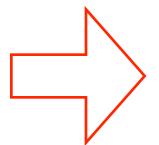
Model-dependent relation:

$$g_{1T}(x, k_{\perp}^2) = -h_{1L}^{\perp}(x, k_{\perp}^2)$$

$$h_{1L}^{\perp}:\langle k_x^u\rangle=-55.8~\mathrm{MeV}~~\langle k_x^d\rangle=27.9~\mathrm{MeV}$$



Musch, Haegler, Negele, Schaefer, PRD83 (2011)



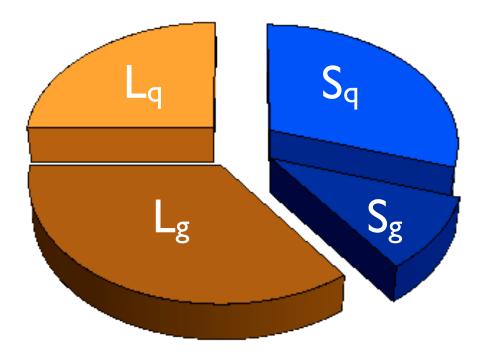
supported by lattice calculation

$$g_{1T}: \langle k_x^u \rangle = 67(5) \text{ MeV} \qquad \langle k_x^d \rangle = -30(5) \text{ MeV}$$

$$h_{1L}^{\perp}: \langle k_x^u \rangle = -60(5) \text{ MeV} \quad \langle k_x^d \rangle = 16(5) \text{ MeV}$$

Different definitions of OAM

Jaffe-Manohar



Pros:

- Satisfies canonical relations
- Complete decomposition

Cons:

- Gauge-variant decomposition
- Missing observables for the OAM

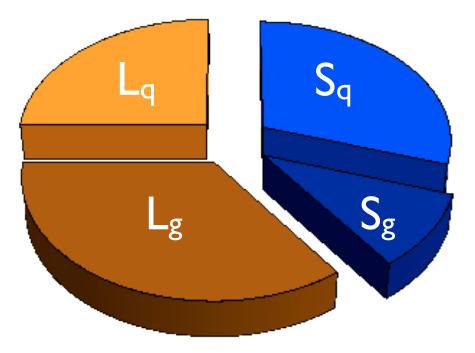
 $(\Delta g \text{ and } \Delta \Sigma \text{ measured by } COMPASS, HERMES , RHIC)$

Improvements:

• OAM accessible via Wigner distributions and it can be calculated on the lattice

Different definitions of OAM

Jaffe-Manohar



Pros:

- Satisfies canonical relations
- Complete decomposition

Cons:

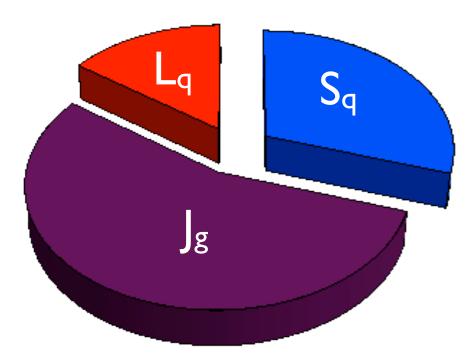
- Gauge-variant decomposition
- Missing observables for the OAM

 $(\Delta g \text{ and } \Delta \Sigma \text{ measured by } COMPASS, HERMES , RHIC)$

Improvements:

 OAM accessible via Wigner distributions and it can be calculated on the lattice

Ji's relation:
$$J^{q,g} = \frac{1}{2} \int_{-1}^{1} dx \, x \left(H^{q,g}(x,0,0) + E^{q,g}(x,0,0) \right)$$



Pros:

- Each term is gauge invariant
- Accessible in DIS and DVCS
- Can be calculated in Lattice QCD

Cons:

• No decomposition of J_g in spin and orbital part

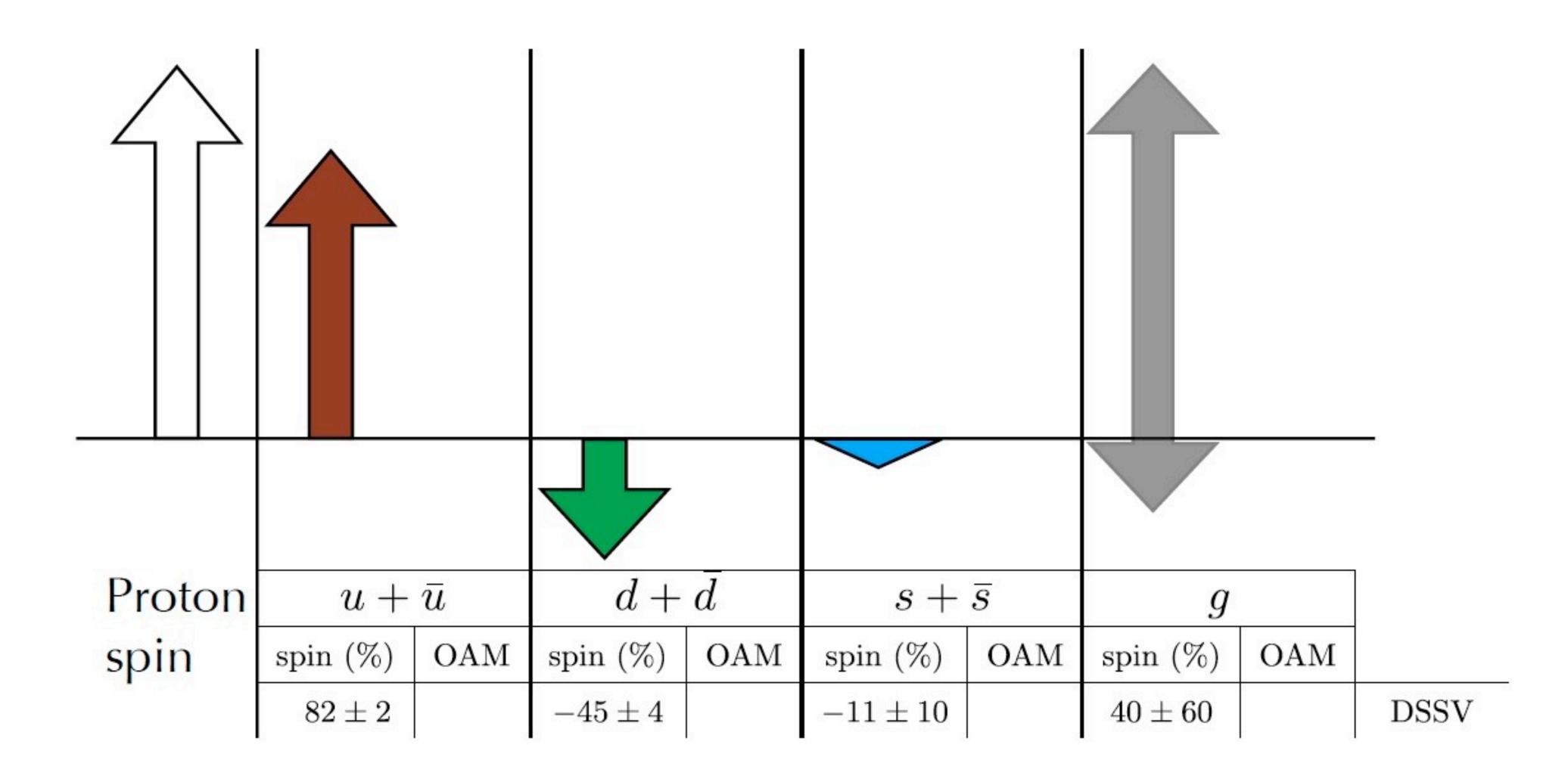
Improvements:

- Complete decomposition: $J^g = L^g + \Delta g$
- quark OAM from twist-3 GPD:

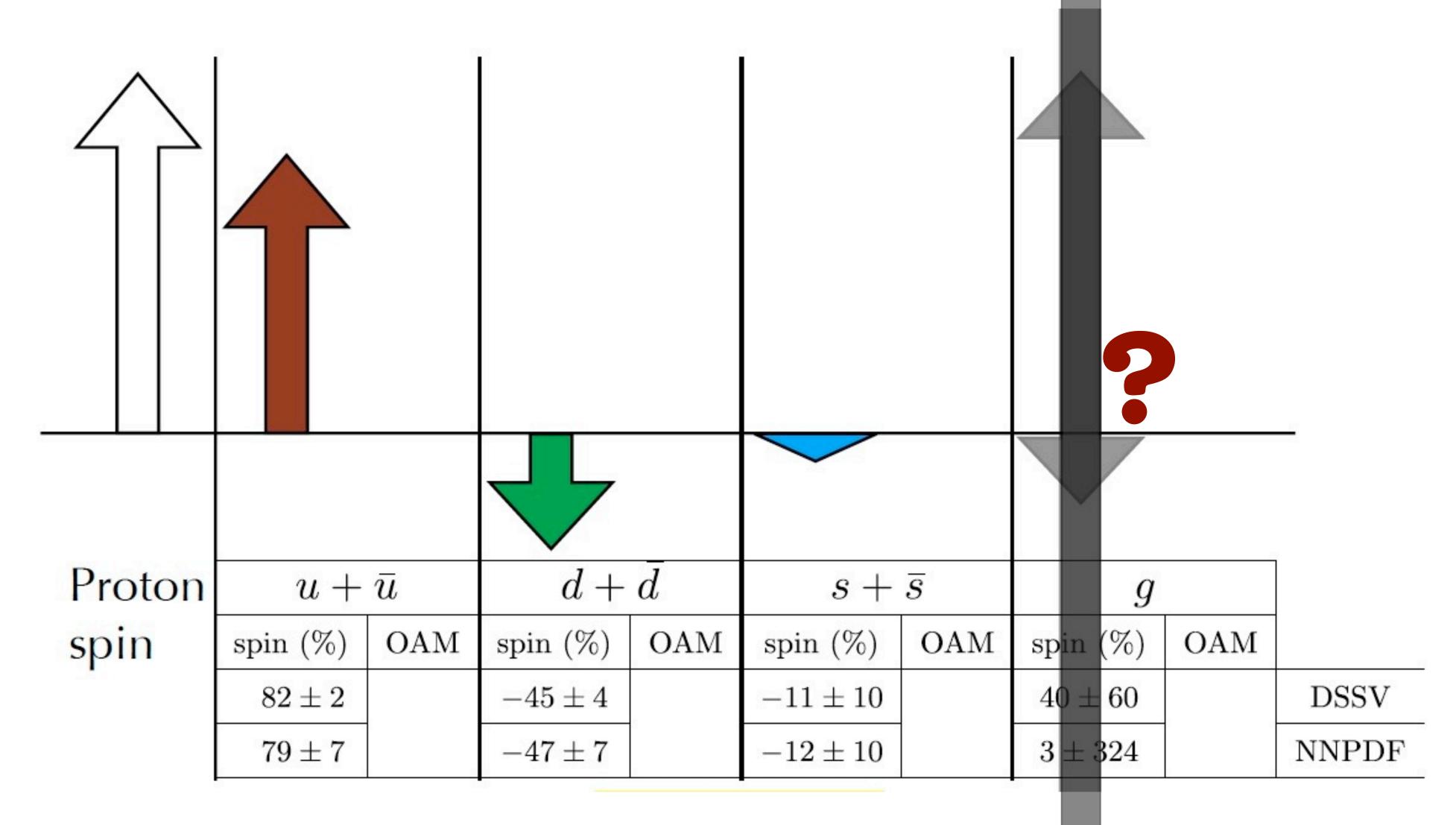
$$L_z^q = -\int \mathrm{d}x \, x \, G_2^q(x, 0, 0)$$

→ see talk of S. Liuti

Status of spin sum rule

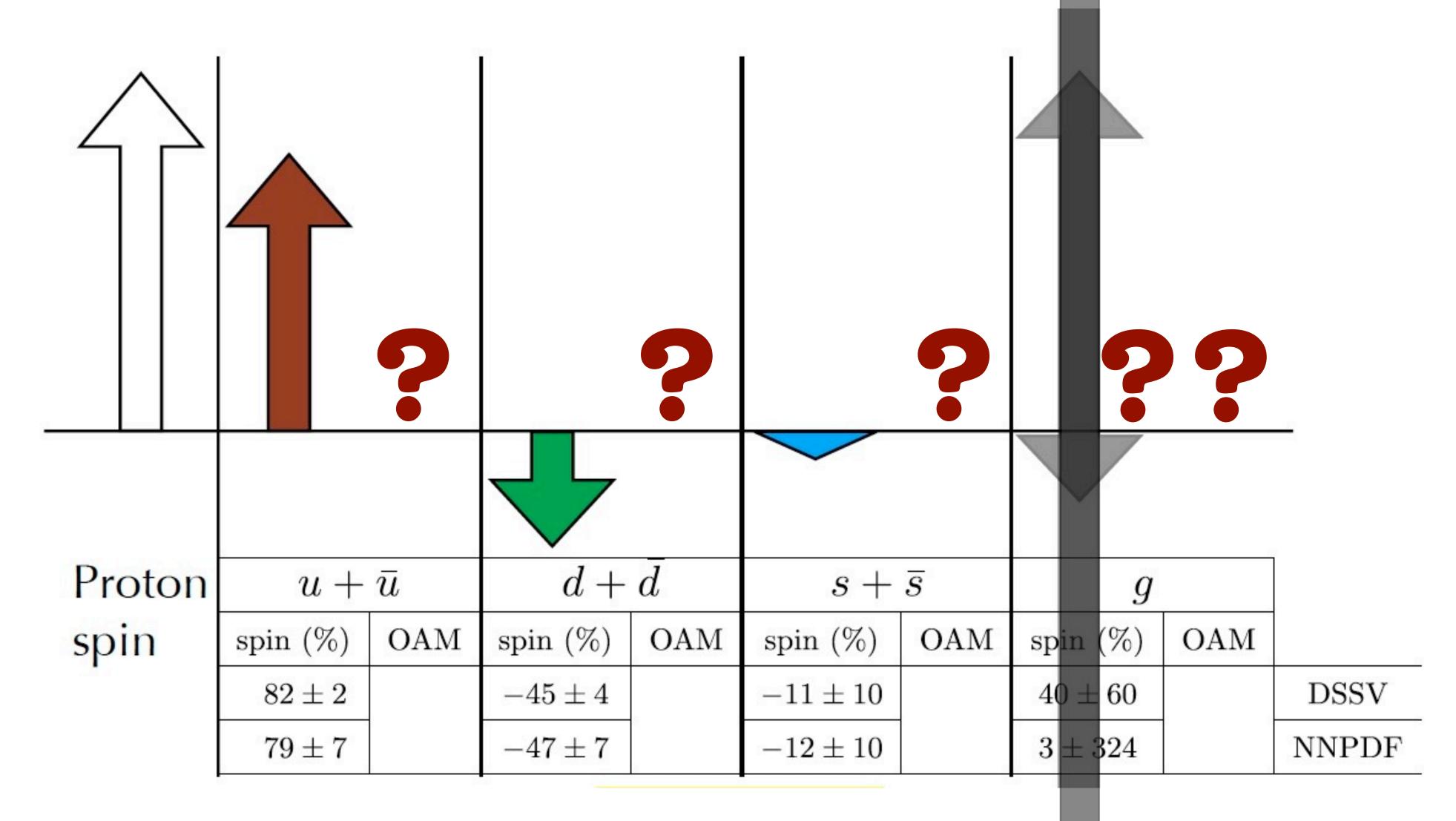


Status of spin sum rule



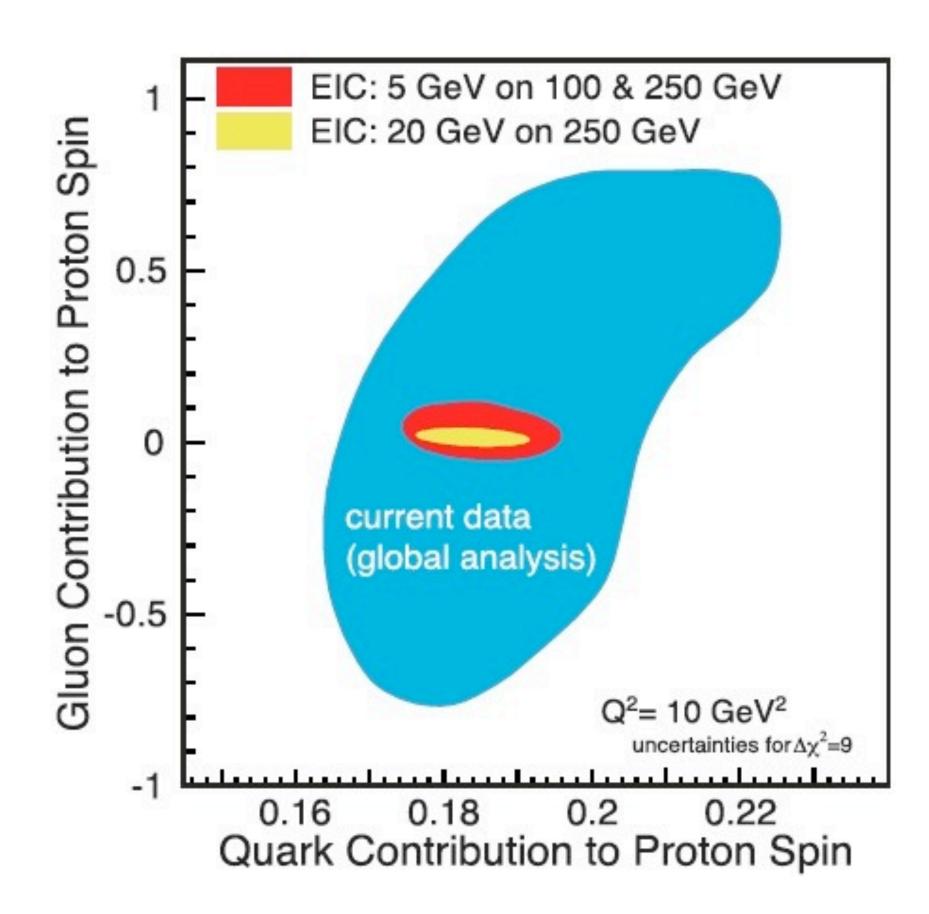
de Florian, Sassot, Stratmann, Vogelsang, PRL 113 (14) NNPDF, Ball... Nocera... NPB 887 (14), Tab. 12, 13

Status of spin sum rule



de Florian, Sassot, Stratmann, Vogelsang, PRL 113 (14) NNPDF, Ball... Nocera... NPB 887 (14), Tab. 12, 13

Impact of EIC on proton spin



Aschenauer, Stratmann, Sassot, PRD86 (2012)

Geesaman, et al., Reaching for the horizon: The 2015 long range plan for nuclear science (2015)

The blind men and the elephant from H. Avakian It's a Fan! It's a Wall! It's It's a Spear! Rope! It's

a Snake!

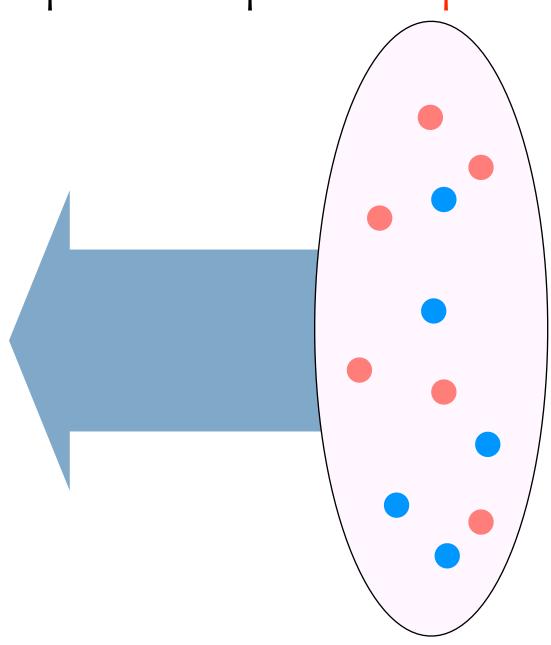
TMDs, GPDs and GTMDs provide different and complementary information and need to talk to each other to reconstruct the full multidimensional picture of the nucleon

It's a

Tree!

Backup

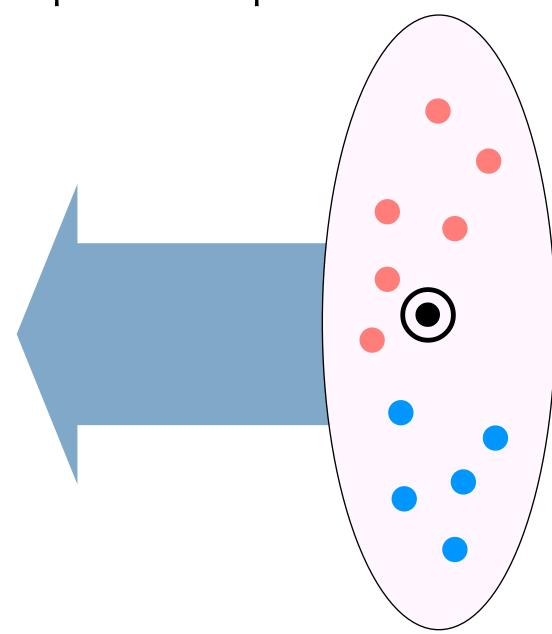
unpolarized quark in unpolarized nucleon



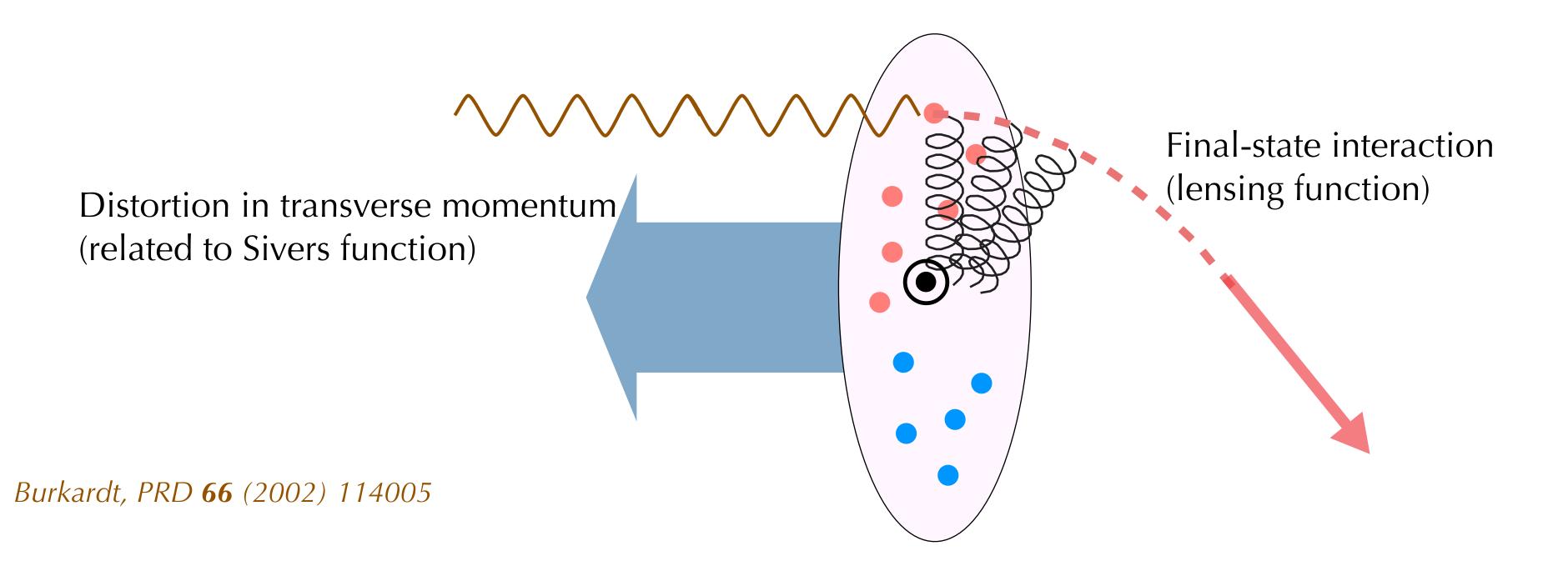
Burkardt, PRD **66** (2002) 114005

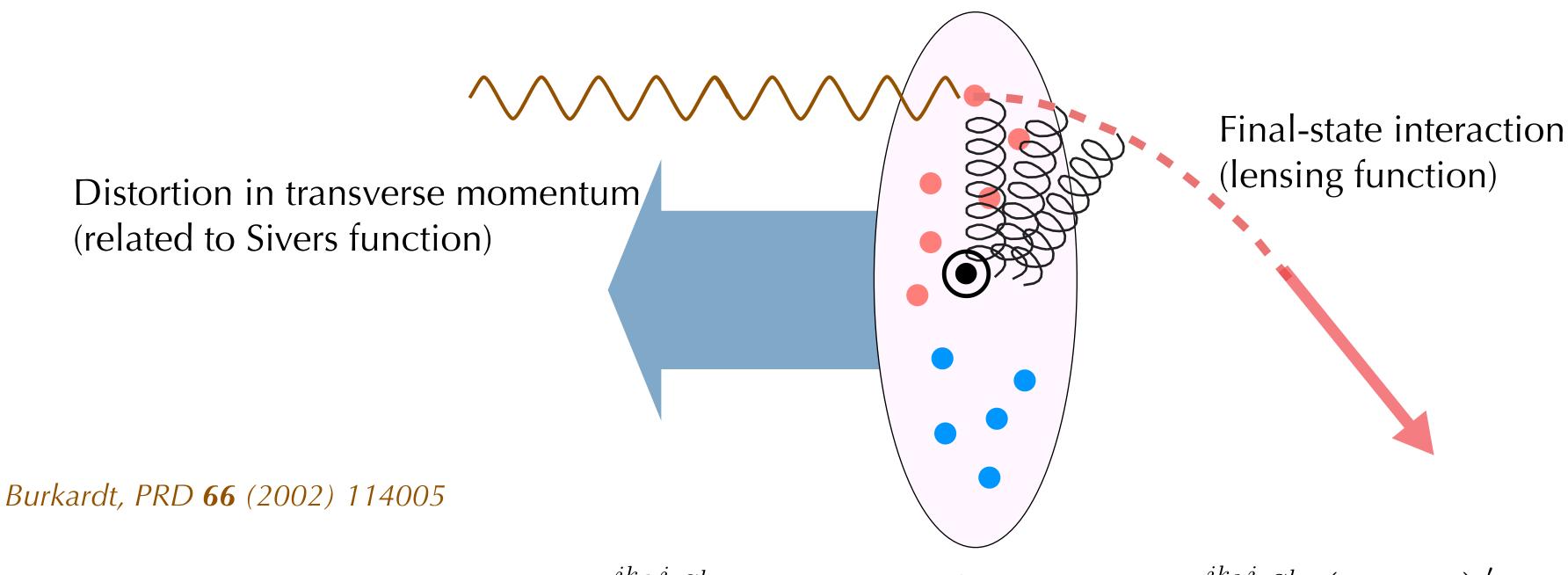
unpolarized quark in transversely pol. nucleon

Distortion in impact parameter (related to GPD E)

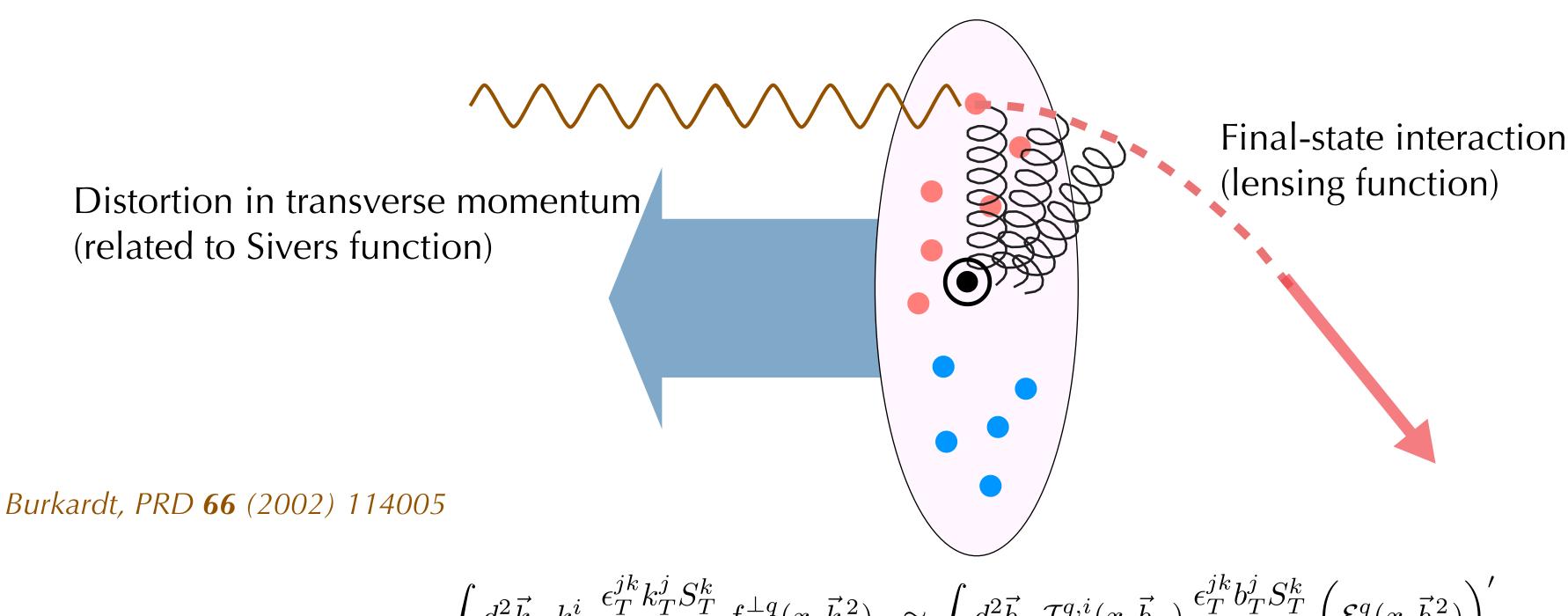


Burkardt, PRD **66** (2002) 114005





$$-\int d^2\vec{k}_T \, k_T^i \, \frac{\epsilon_T^{jk} k_T^j S_T^k}{M} \, f_{1T}^{\perp q}(x, \vec{k}_T^2) \, \simeq \int d^2\vec{b}_T \, \mathcal{I}^{q,i}(x, \vec{b}_T) \, \frac{\epsilon_T^{jk} b_T^j S_T^k}{M} \left(\mathcal{E}^q(x, \vec{b}_T^2) \right)'$$
Sivers function Lensing function F.T. of E(x,0,t)



$$-\int d^2\vec{k}_T \, k_T^i \, \frac{\epsilon_T^{jk} k_T^j S_T^k}{M} \, f_{1T}^{\perp q}(x, \vec{k}_T^{\, 2}) \, \simeq \int d^2\vec{b}_T \, \mathcal{I}^{q,i}(x, \vec{b}_T) \, \frac{\epsilon_T^{jk} b_T^j S_T^k}{M} \left(\mathcal{E}^q(x, \vec{b}_T^{\, 2}) \right)'$$
Sivers function Lensing function F.T. of E(x,0,t)

inspired from model results

Bacchetta, Radici, PRL 107 (2011)

(COMPASS, HERMES, JLab)

first moment constrained from anomalous magnetic moment

$$ullet$$
 Results from Sivers \bullet lensing \bullet GPD $J^q = \frac{1}{2} \int \mathrm{d}x \, x \left[H^q(x,0,0) + E^q(x,0,0) \right]$

$$J^{q} = \frac{1}{2} \int dx \, x \left[H^{q}(x, 0, 0) + E^{q}(x, 0, 0) \right]$$

$$J^{s} = 0.229 \pm 0.002_{-0.012},$$

$$J^{d} = -0.007 \pm 0.003_{-0.005}^{+0.020},$$

$$J^{s} = 0.006_{-0.006}^{+0.002},$$

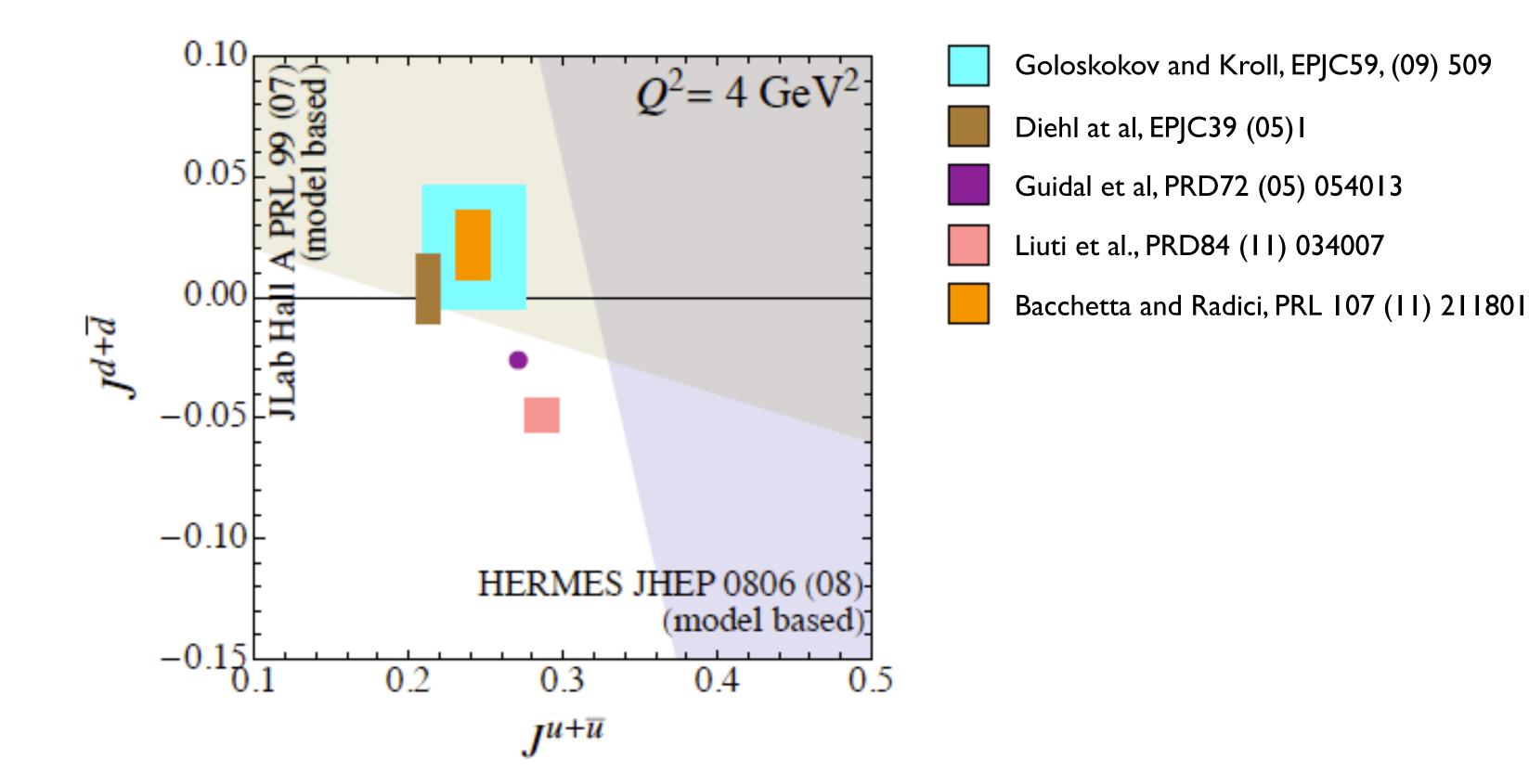
$$J^{u} = 0.229 \pm 0.002^{+0.008}_{-0.012}, \qquad J^{\bar{u}} = 0.015 \pm 0.003^{+0.001}_{-0.000},$$

$$J^{d} = -0.007 \pm 0.003^{+0.020}_{-0.005}, \qquad J^{\bar{d}} = 0.022 \pm 0.005^{+0.001}_{-0.000},$$

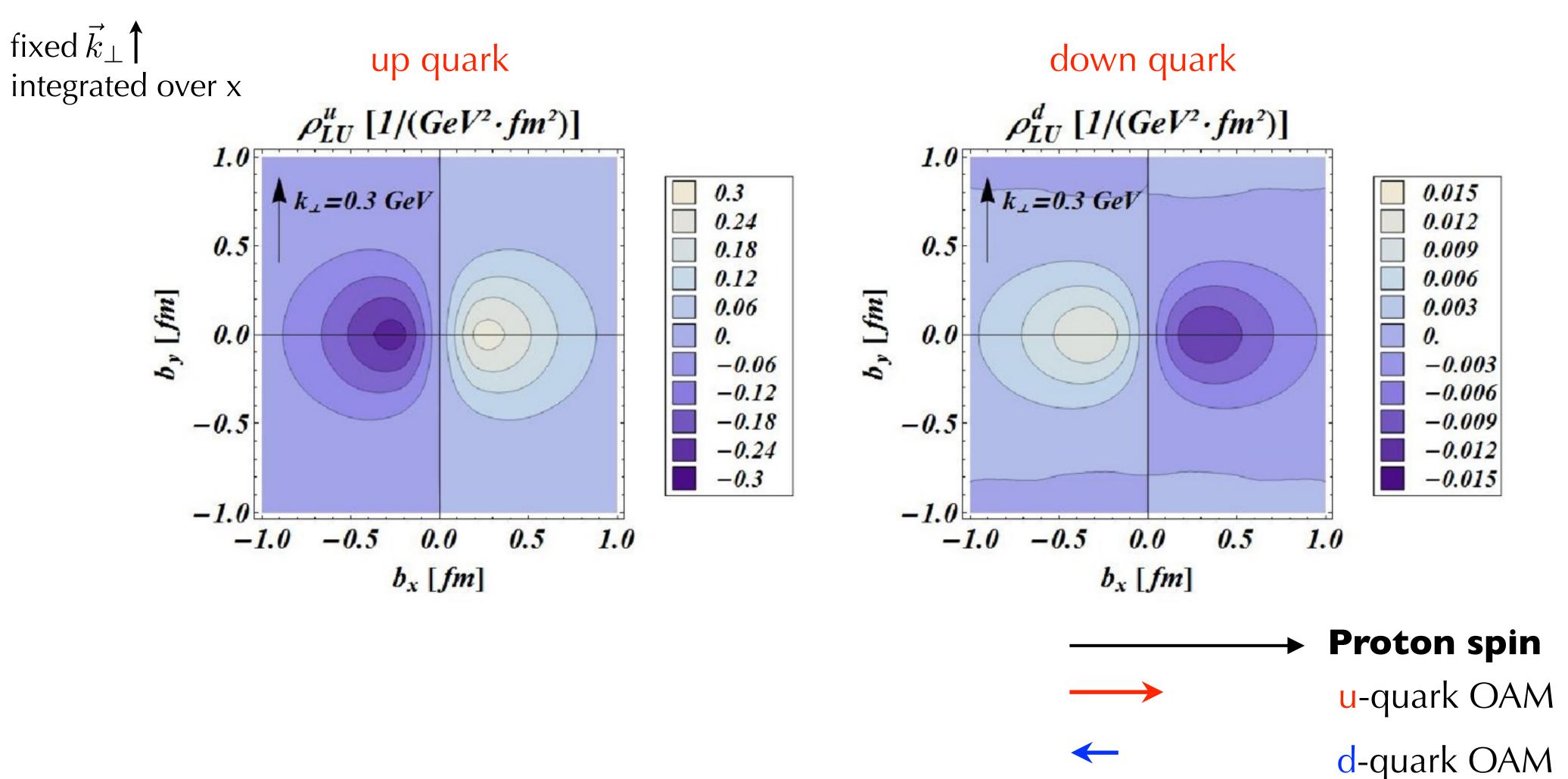
$$J^{s} = 0.006^{+0.002}_{-0.006}, \qquad J^{\bar{s}} = 0.006^{+0.000}_{-0.005}.$$

$$(Q^{2} = 4 \text{ GeV}^{2})$$

Comparing with GPD models and parametrizations



Unpol. quark in Long. pol. Proton

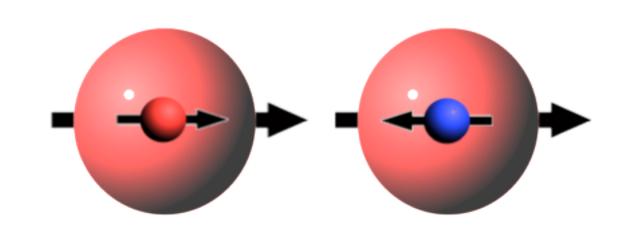


★ projection to GPD and TMD is vanishing

unique information on OAM from Wigner distributions

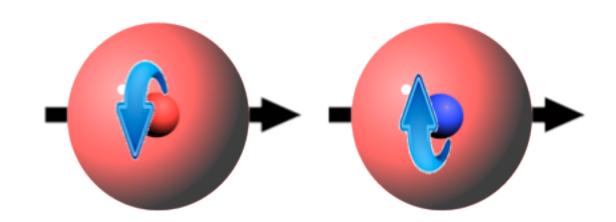
Longitudinal

$\begin{bmatrix} \vec{k}_{\perp} \end{bmatrix} \begin{bmatrix} \vec{b}_{\perp} \end{bmatrix}$ $g_{1L}^q \leftrightarrow \tilde{\mathcal{H}}^q$

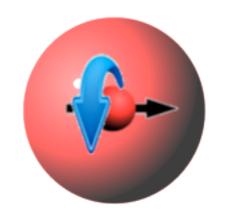


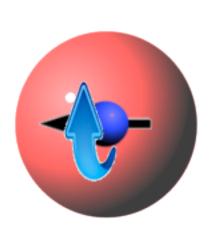
$$\vec{b}_{\perp}, \vec{k}_{\perp}$$

$$\ell_z^q \leftrightarrow \tilde{\mathcal{F}}_{14}^q$$



$$\begin{bmatrix} \vec{b}_{\perp}, \vec{k}_{\perp} \end{bmatrix}$$
$$C_z^q \leftrightarrow \tilde{\mathcal{G}}_{11}^q$$



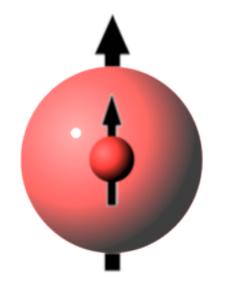


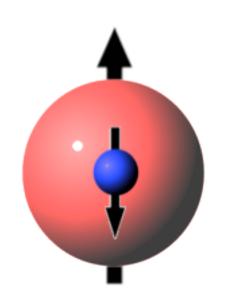
[Lorce', Pasquini (2011) Meissner, Metz, Schlegel (2009)]

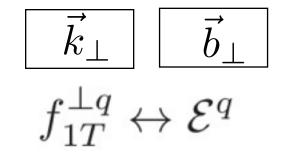
Transverse

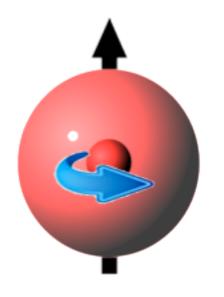
$$\vec{k}_{\perp}$$
 \vec{b}_{\perp}

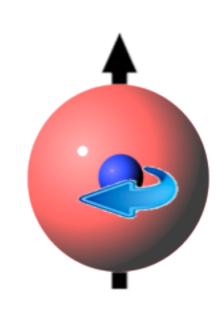
$$h_1^q \leftrightarrow \mathcal{H}_T^q$$

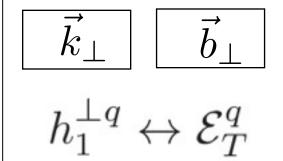


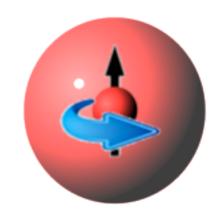


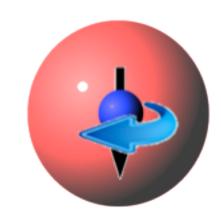






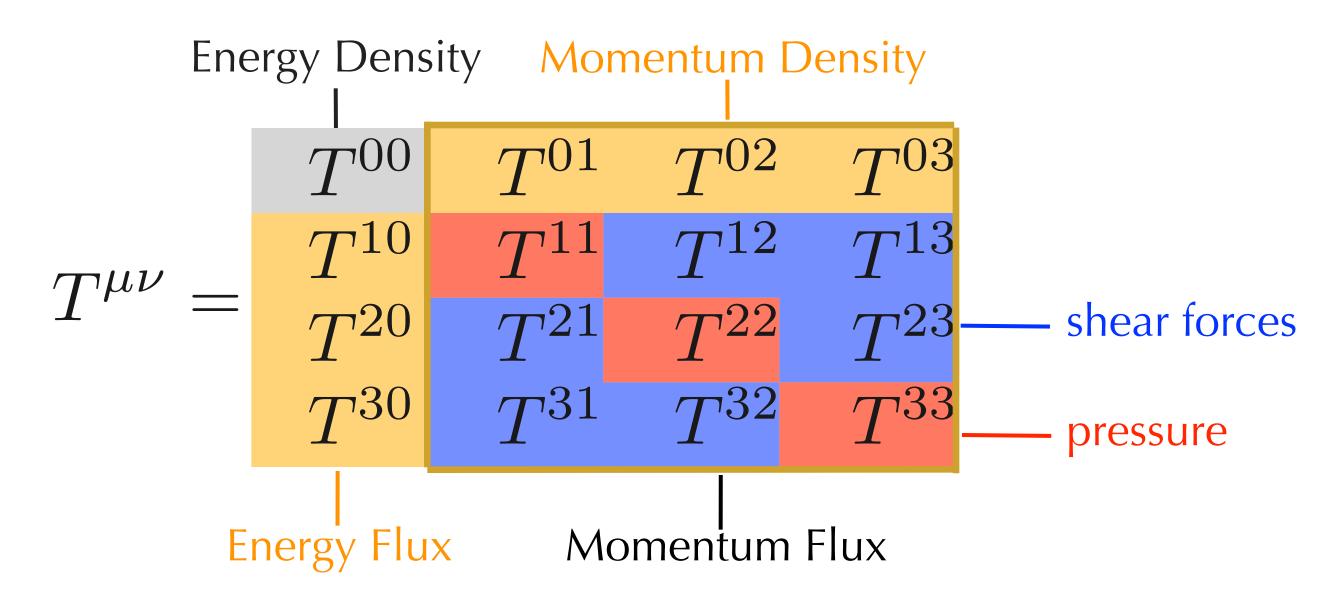






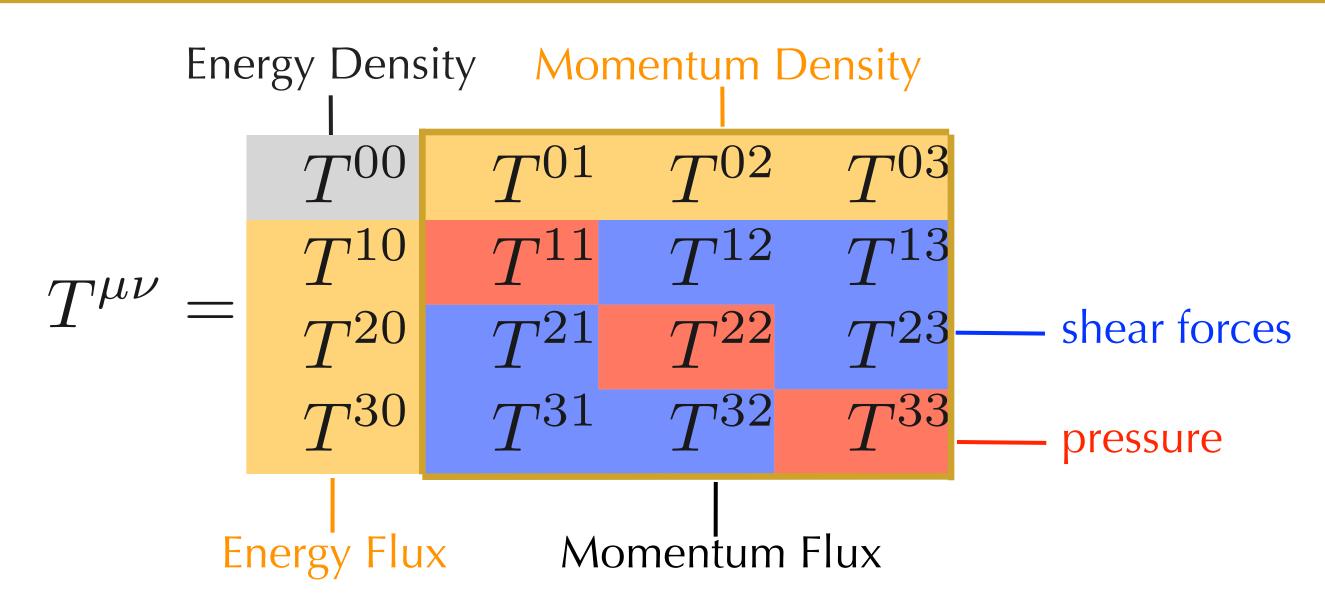
[Burkardt (2005)] [Barone et al. (2008)]

Form factors of Energy Momentum tensor



$$\langle P' | T_{\mu\nu}^{Q,G} | P \rangle = \bar{u}(P') [M_2^{Q,G}(t) \frac{P_{\mu}P_{\nu}}{M_N} + J_{N}^{Q,G}(t) \frac{i(P_{\mu}\sigma_{\nu\rho} + P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{2M_N} + d_1^{Q,G}(t) \frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^2}{5M_N} \pm \bar{c}(t)g_{\mu\nu}] u(P)$$

Form factors of Energy Momentum tensor



$$\langle P' | T_{\mu\nu}^{Q,G} | P \rangle = \bar{u}(P') [M_2^{Q,G}(t) \frac{P_{\mu}P_{\nu}}{M_N} + J_{N}^{Q,G}(t) \frac{i(P_{\mu}\sigma_{\nu\rho} + P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{2M_N} + d_1^{Q,G}(t) \frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^2}{5M_N} \pm \bar{c}(t)g_{\mu\nu}] u(P)$$

Relation with second-moments of GPDs:

$$\sum_{q} \int dx \, x \, H^{q}(x,\xi,t) = M_{2}^{Q}(t) + \frac{4}{5} \, d_{1}^{Q}(t) \xi^{2}$$

$$\sum_{\alpha} \int dx \, x \, E^{q}(x,\xi,t) = 2J^{Q}(t) - M_{2}^{Q}(t) - \frac{4}{5} \, d_{1}^{Q}(t)\xi^{2}$$

"Charges" of the EM Tensor Form Factors at t=0

 $M_2(0)$ nucleon momentum carried by parton

J(0) angular momentum of partons

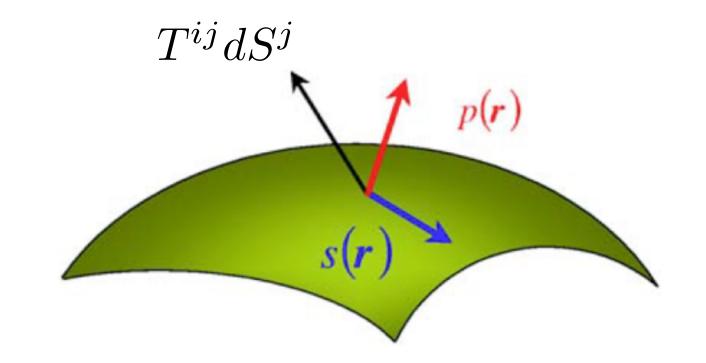
 $d_1(0)$ D-term related to "stability" of the nucleon

Fourier transform in coordinate space

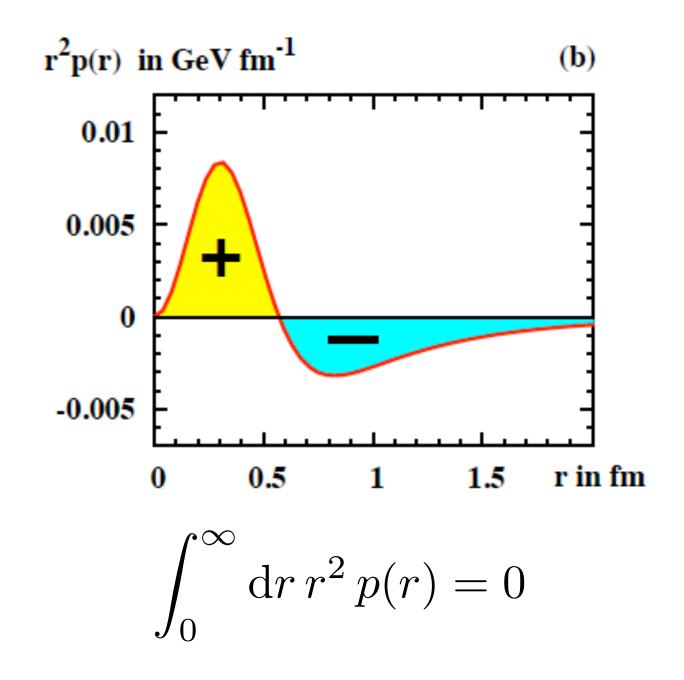
$$T_{ij}^Q(\vec{r}) = s(\vec{r}) \left(\frac{r_i r_j}{r^2} - \frac{1}{3} \delta_{ij} \right) + p(\vec{r}) \delta_{ij}$$
 shear forces pressure
$$\downarrow$$

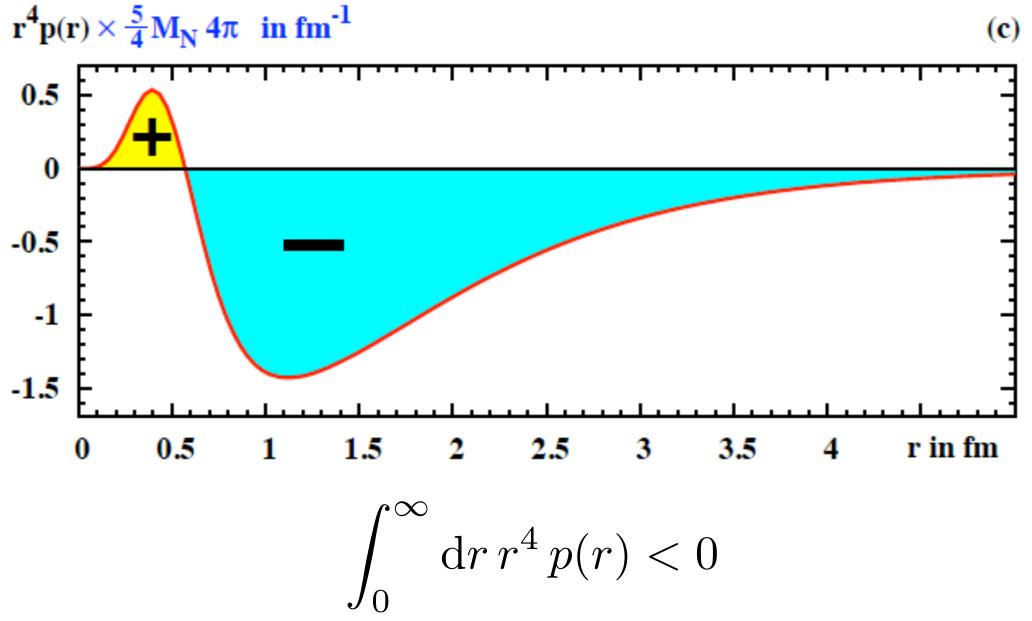
$$d_1^Q(0) = 5\pi M_N \int_0^\infty \mathrm{d}r \, r^4 \, p(r)$$

"mechanical properties" of nucleon



M. Polyakov, PLB **555** (2003) 57





Quark spin and OAM

GTMDs

Quark spin (from DIS)

$$S_z^q = \frac{1}{2} \int \mathrm{d}x \, \mathrm{d}^2 k_\perp \, G_{14}^q(x,0,\vec{k}_\perp,\vec{0}_\perp)$$
 polarized PDF inclusive DIS

$$\ell_z^q = -\int \mathrm{d}x \,\mathrm{d}^2 k_\perp \, \frac{\vec{k}_\perp^2}{M^2} \, F_{14}^q(x,0,\vec{k}_\perp,\vec{0}_\perp)$$

[Lorce, BP(2011)] [Hatta (2011)] [Lorce',BP, et al. (2012)]

$$\ell_{iz}^{\mathrm{int}} = \vec{b}_{i\perp} \times \vec{k}_{i\perp}$$

TMDs

Quark spin (from DIS)

$$S_z^q = \frac{1}{2} \int \mathrm{d}x \, \mathrm{d}^2 k_\perp \, g_{1L}^q(x,\vec{k}_\perp)$$
 polarized PDF inclusive DIS

$$\mathcal{L}_{z}^{q}(x,\vec{k}_{\perp}) = -\frac{\vec{k}_{\perp}^{2}}{2M^{2}} h_{1T}^{\perp q}(x,\vec{k}_{\perp}^{2})$$

[Burkardt (2007)]
[Efremov et al. (2008,2010)]
[She, Zhu, Ma (2009)]
[Avakian et al. (2010)]
[Lorce', BP (2011)]

- Model-dependent
- Not intrinsic!

$$\mathcal{L}_{iz} = \vec{r}_{i\perp} \times \vec{k}_{i\perp}$$

GPDs

Quark spin (from DIS)

$$S_z^q = \frac{1}{2} \int \mathrm{d}x \, \tilde{H}^q(x, 0, 0)$$

polarized PDF inclusive DIS

Ji sum rule

$$J^{q} = \frac{1}{2} \int dx \, x \left[H^{q}(x, 0, 0) + E^{q}(x, 0, 0) \right]$$

$$L^q = J^q - S^q_z$$
 [Ji (1997)]

Twist-3

$$L_z^q = -\int \mathrm{d}x\, x\, G_2^q(x,0,0) \label{eq:Lz}$$
 Pure twist-3!

[Penttinen et al. (2000)]

OAM and origin dependence

OAM from Pretzelosity

$$\mathcal{L}_{iz} = \vec{r}_{i\perp} imes \vec{k}_{i\perp}$$
 "naive" OAM

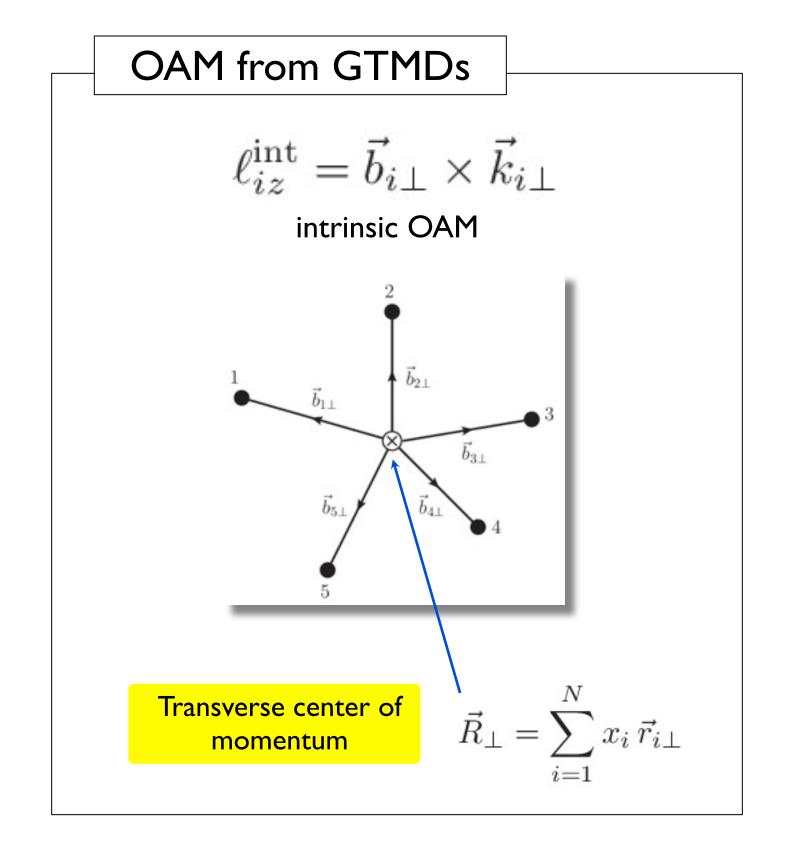
Depends on proton position

Momentum conservation

$$\sum_{i=1}^{N} \vec{k}_{i\perp} = \vec{0}_{\perp}$$

equivalence for TOTAL OAM

Model	LCCQM			$\chi { m QSM}$		
q	u	d	Total	u	d	Total
ℓ^q_z	0.131	-0.005	0.126	0.073	-0.004	0.069
L_z^q	0.071	0.055	0.126	-0.008	0.077	0.069
\mathcal{L}_z^q	0.169	-0.042	0.126	0.093	-0.023	0.069



$$\mathcal{L}_{iz}
eq \ell_{iz}^{ ext{int}}$$

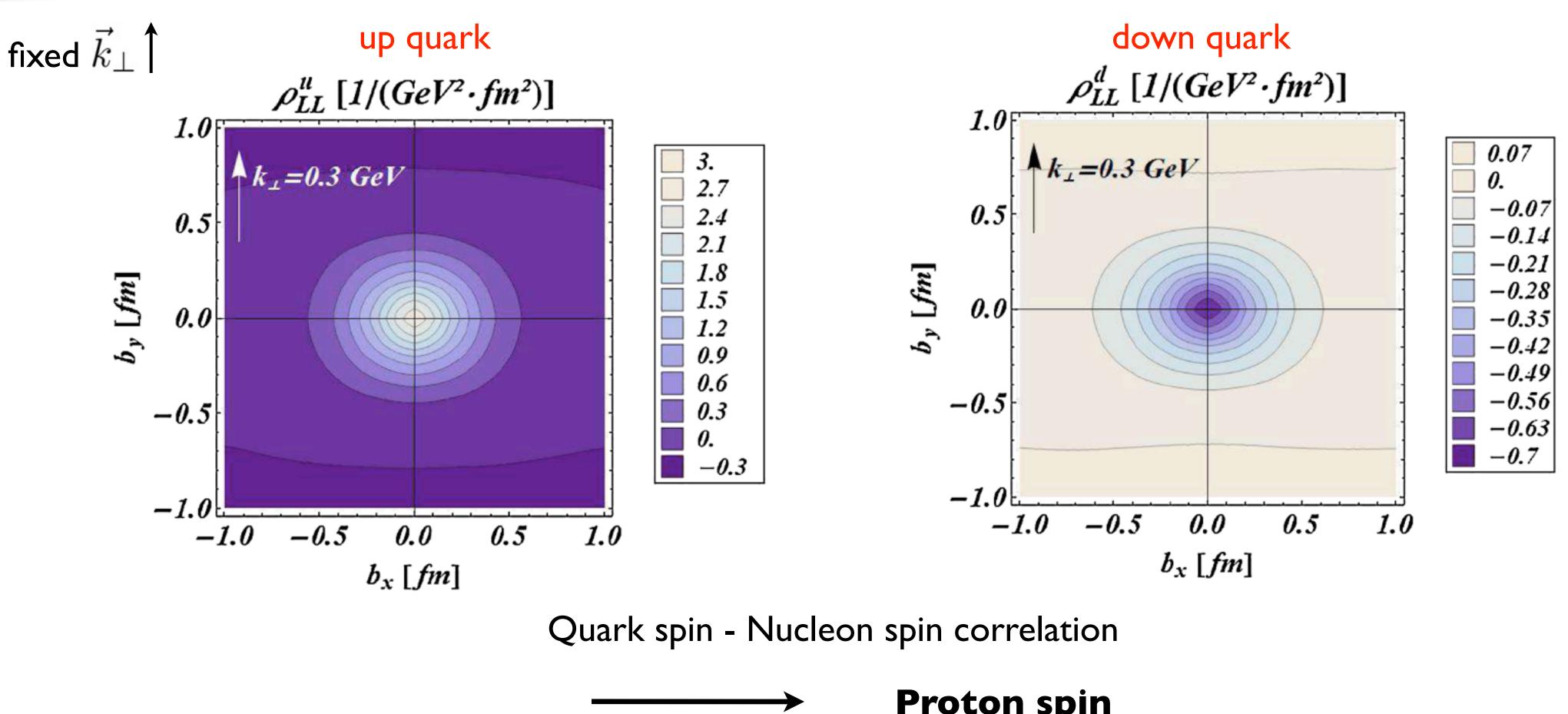
$$\mathcal{L}_z = l_z^{ ext{int}}$$

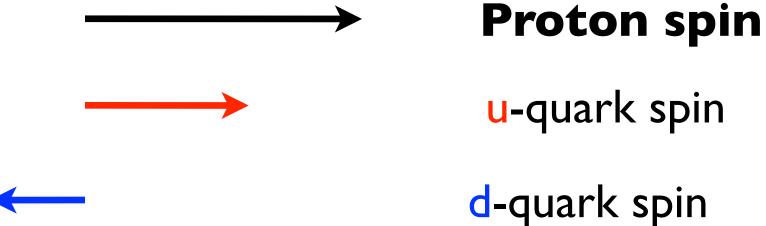
$$\sum_{i=1}^{N} \vec{b}_{i\perp} \times \vec{k}_{i\perp} = \sum_{i=1}^{N} \left(\vec{r}_{i\perp} - \vec{R}_{\perp} \right) \times \vec{k}_{i\perp} = \sum_{i=1}^{N} \vec{r}_{i\perp} \times \vec{k}_{i\perp}$$

Intrinsic

Naive

Long. pol. quark in Long. pol. Proton

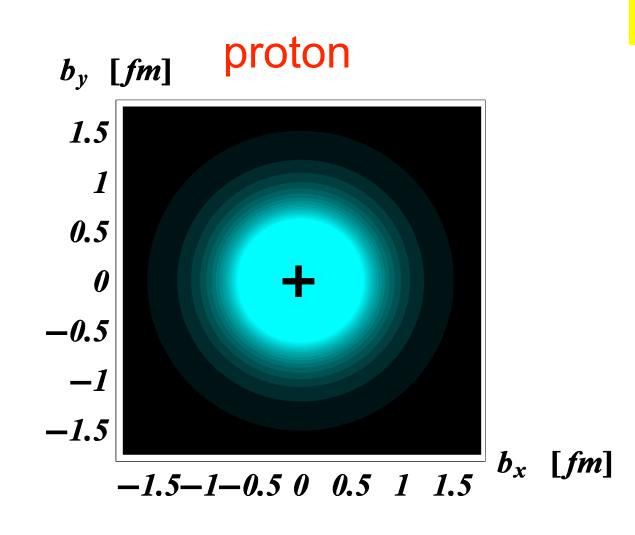


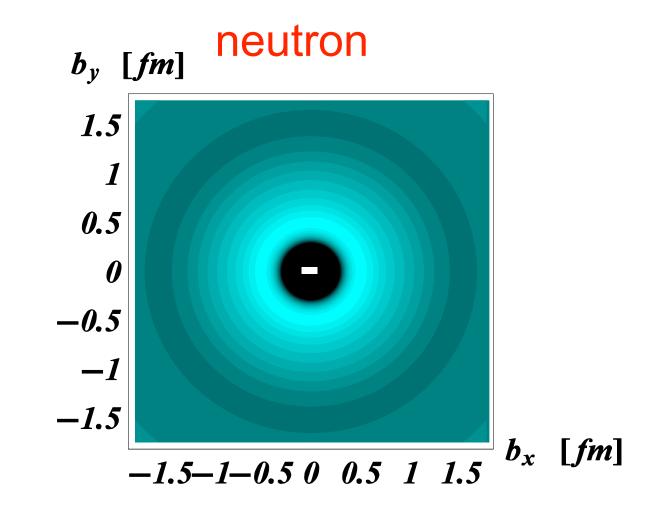


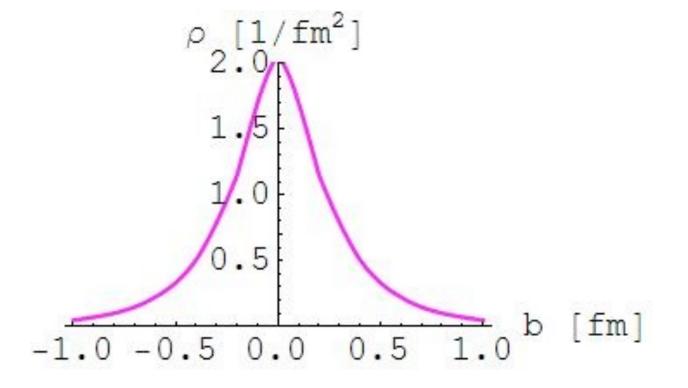
Charge density of partons in the transverse plane

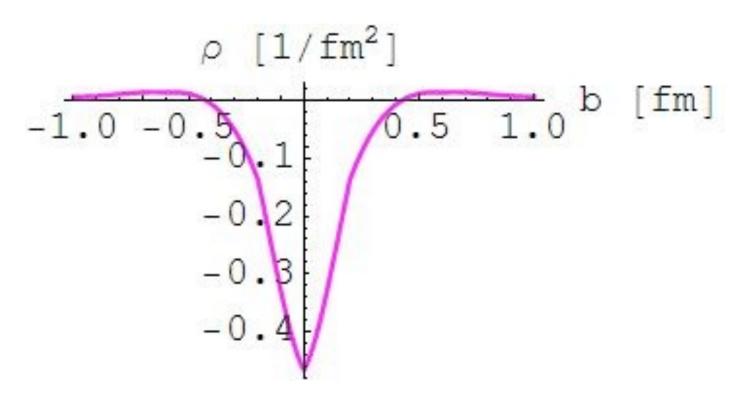
$$\rho^q(b_\perp^2) = e^q \int d^2 \Delta_\perp e^{-i\vec{b}_\perp \cdot \vec{\Delta}_\perp} F_1^q(\Delta_\perp^2)$$

charge distribution in the transverse plane









SIDIS IN→I'h X

$$\frac{d^{4}\sigma}{dx\,dy\,dz\,d\phi_{h}} = \frac{d^{4}\sigma_{0}}{dx\,dy\,dz\,d\phi_{h}} \left\{ 1 + \cos(2\phi_{h})\,p_{1}(y)\,A_{UU}^{\cos(2\phi_{h})} + S_{L}\sin(2\phi_{h})\,p_{1}(y)\,A_{UL}^{\sin(2\phi_{h})} + \lambda\,S_{L}\,p_{2}(y)\,A_{LL} + \lambda\,S_{T}\cos(\phi_{h} - \phi_{S})\,p_{2}(y)\,A_{LT}^{\cos(\phi_{h} - \phi_{S})} + S_{T}\sin(\phi_{h} - \phi_{S})\,A_{UT}^{\sin(\phi_{h} - \phi_{S})} + S_{T}\sin(\phi_{h} + \phi_{S})\,p_{1}(y)\,A_{UT}^{\sin(\phi_{h} + \phi_{S})} + S_{T}\sin(3\phi_{h} - \phi_{S})\,p_{1}(y)\,A_{UT}^{\sin(3\phi_{h} - \phi_{S})} \right\} + \dots$$

$$A_{XY}^{\text{weight}} = \frac{F_{XY}^{\text{weight}}}{F_{UU}}$$

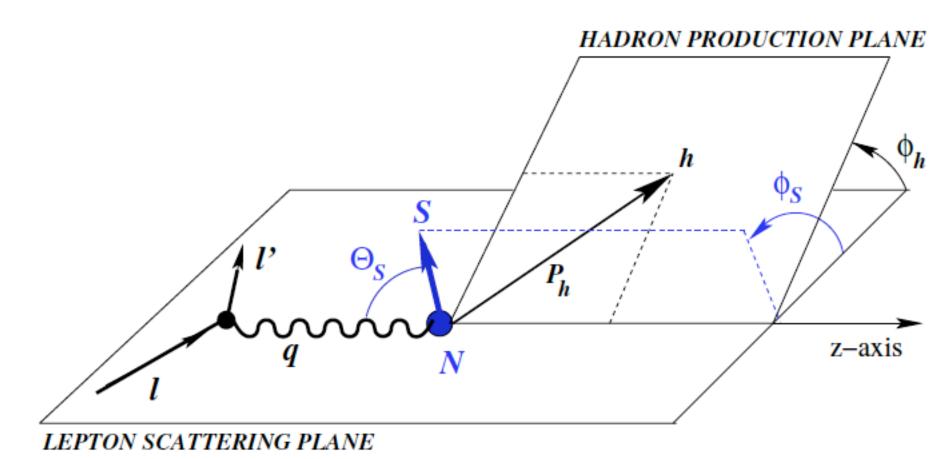
X=beam polarization Y=target polarization weight=ang. distr. hadron

$$F_{UU} \propto \sum_{a} e_a^2 f_1^a \otimes D_1^a$$

$$F_{LL} \propto \sum_{a} e_a^2 g_1^a \otimes D_1^a$$

$$F_{LT}^{\cos(\phi_h - \phi_S)} \propto \sum_{a} e_a^2 g_{1T}^{\perp a} \otimes D_1^a$$

$$F_{UT}^{\sin(\phi_h - \phi_S)} \propto \sum_{a} e_a^2 f_{1T}^{\perp a} \otimes D_1^a$$



$$F_{UU}^{\cos(2\phi_h)} \propto \sum_{a} e_a^2 h_1^{\perp a} \otimes H_1^{\perp a}$$

$$F_{UL}^{\sin(2\phi_h)} \propto \sum_{a} e_a^2 h_{1L}^{\perp a} \otimes H_1^{\perp a}$$

$$F_{UT}^{\sin(\phi_h + \phi_S)} \propto \sum_{a} e_a^2 h_1^a \otimes H_1^{\perp a}$$

$$F_{UT}^{\sin(3\phi_h - \phi_S)} \propto \sum_{a} e_a^2 h_{1T}^{\perp a} \otimes H_1^{\perp a}$$

SIDIS IN→I'h X

$$\frac{d^{4}\sigma}{dx\,dy\,dz\,d\phi_{h}} = \frac{d^{4}\sigma_{0}}{dx\,dy\,dz\,d\phi_{h}} \left\{ 1 + \cos(2\phi_{h})\,p_{1}(y)\,A_{UU}^{\cos(2\phi_{h})} + S_{L}\sin(2\phi_{h})\,p_{1}(y)\,A_{UL}^{\sin(2\phi_{h})} + \lambda\,S_{L}\,p_{2}(y)\,A_{LL} + \lambda\,S_{T}\cos(\phi_{h} - \phi_{S})\,p_{2}(y)\,A_{LT}^{\cos(\phi_{h} - \phi_{S})} + S_{T}\sin(\phi_{h} - \phi_{S})\,A_{UT}^{\sin(\phi_{h} - \phi_{S})} + S_{T}\sin(\phi_{h} + \phi_{S})\,p_{1}(y)\,A_{UT}^{\sin(\phi_{h} + \phi_{S})} + S_{T}\sin(3\phi_{h} - \phi_{S})\,p_{1}(y)\,A_{UT}^{\sin(3\phi_{h} - \phi_{S})} \right\} + \dots$$

$$A_{XY}^{\text{weight}} = \frac{F_{XY}^{\text{weight}}}{F_{UU}}$$

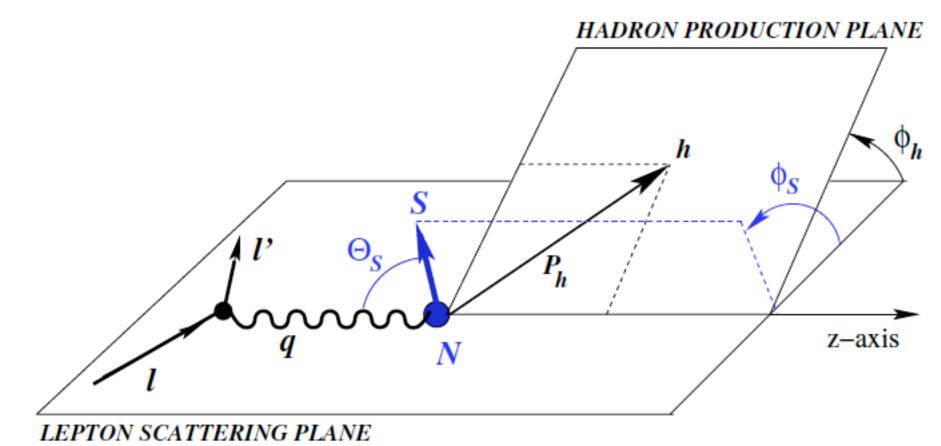
X=beam polarization Y=target polarization weight=ang. distr. hadron

$$F_{UU} \propto \sum_{a} e_a^2 f_1^a \otimes D_1^a$$

$$F_{LL} \propto \sum_{a} e_a^2 g_1^a \otimes D_1^a$$

$$F_{LT}^{\cos(\phi_h - \phi_S)} \propto \sum_{a} e_a^2 g_{1T}^{\perp a} \otimes D_1^a$$

$$F_{UT}^{\sin(\phi_h - \phi_S)} \propto \sum_{a} e_a^2 f_{1T}^{\perp a} \otimes D_1^a$$



$$F_{UU}^{\cos(2\phi_h)} \propto \sum_{a} e_a^2 h_1^{\perp a} \otimes H_1^{\perp a}$$

$$F_{UL}^{\sin(2\phi_h)} \propto \sum_{a} e_a^2 h_{1L}^{\perp a} \otimes H_1^{\perp a}$$

$$F_{UT}^{\sin(\phi_h + \phi_S)} \propto \sum_{a} e_a^2 h_1^a \otimes H_1^{\perp a}$$

$$F_{UT}^{\sin(3\phi_h - \phi_S)} \propto \sum_{a} e_a^2 h_{1T}^{\perp a} \otimes H_1^{\perp a}$$

Collins SSA

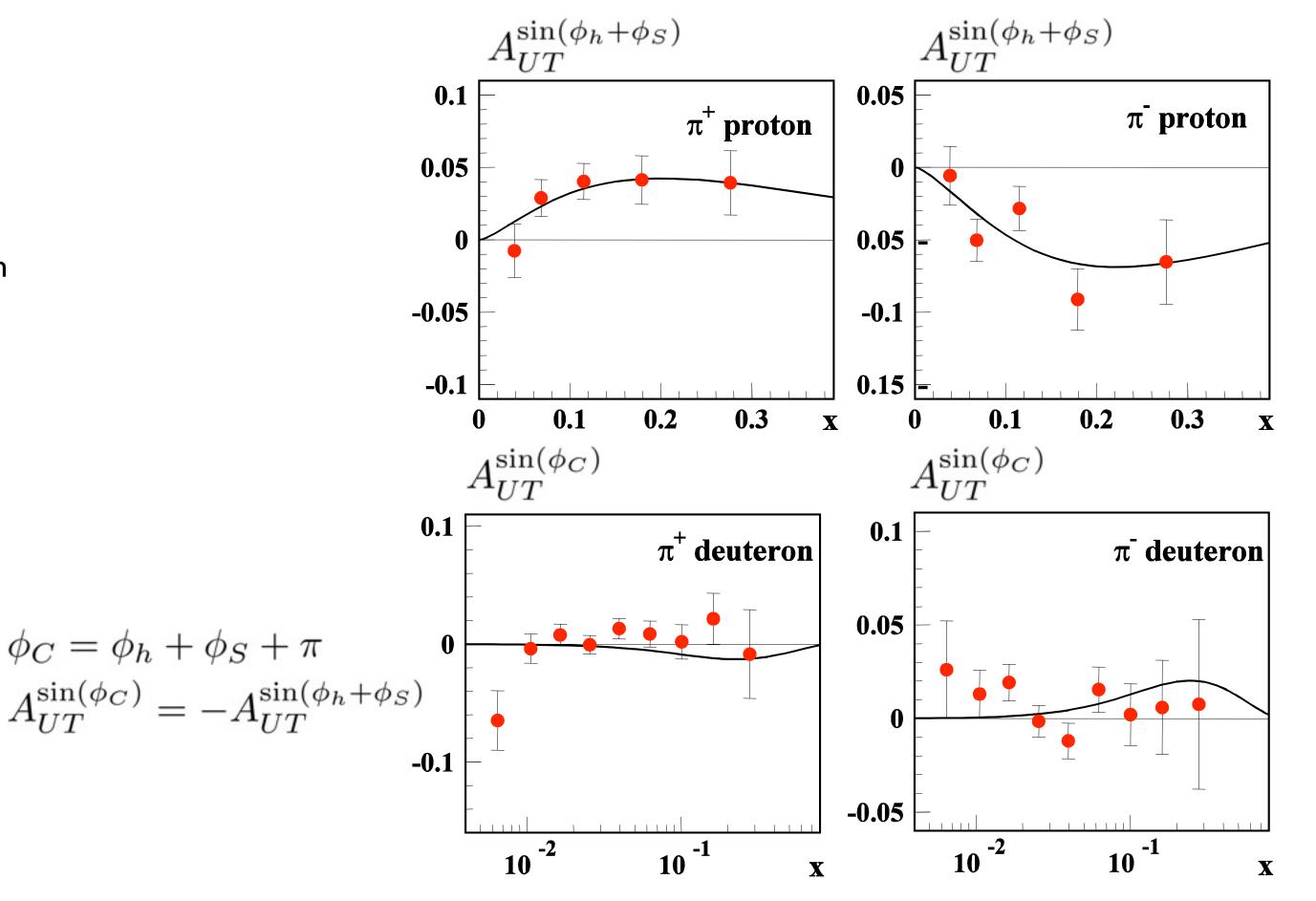
gaussian ansatz
$$\longrightarrow$$

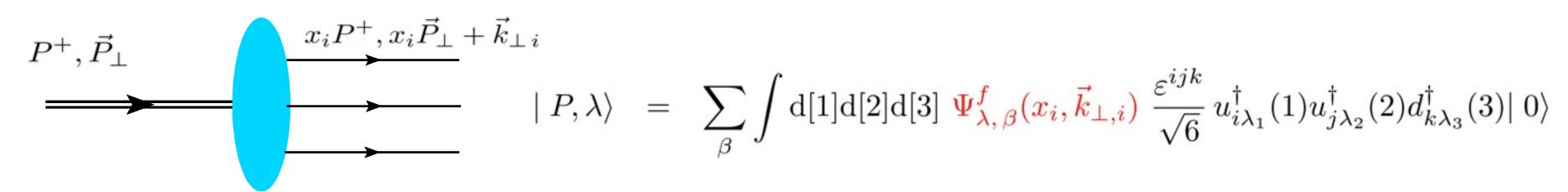
$$A_{UT}^{\sin(\phi_h + \phi_S)}(x) = \frac{\sum_a e_a^2 x h_1^a(x) \langle B_1 H_1^{\perp (1/2)a} \rangle}{\sum_a e_a^2 x f_1^a(x) \langle D_1^a \rangle}$$

- $h_1(x)$ from Light-Cone CQM evolved at Q²=2.5 GeV², $f_1(x)$ from GRV at Q²=2.5 GeV²
- $\succ H_1^{\perp (1/2)}$ from HERMES & BELLE data Efremov, Goeke, Schweitzer, PRD73 (2006); Anselmino et al., PRD75 (2007); Vogelsang, Yuan, PRD72 (2005)
- HERMES data:Diefenthaler, hep-ex/0507013

More recent HERMES and BELLE data not included in the fit of Collins function

COMPASS data:
Alekseev et al., PLB673, (2009)





* classification of LCWFs in angular momentum components

[Ji, J.P. Ma, Yuan, 03; Burkardt, Ji, Yuan, 02]

$$|P,\uparrow\rangle = |P,\uparrow\rangle_{-\frac{3}{2}}^{L_z=2} + |P,\uparrow\rangle_{-\frac{1}{2}}^{L_z=1} + |P,\uparrow\rangle_{\frac{1}{2}}^{L_z=0} + |P,\uparrow\rangle_{\frac{3}{2}}^{L_z=-1}$$

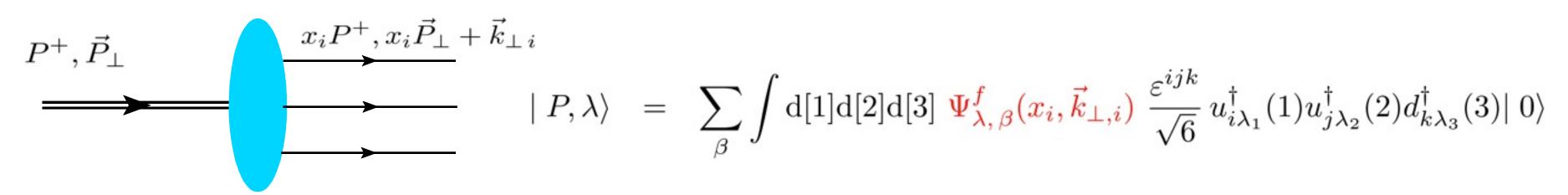
$$\mathsf{J}_\mathsf{Z} = \mathsf{J}_\mathsf{Z}^\mathsf{Q} + \mathsf{L}_\mathsf{Z}^\mathsf{Q}$$
 total quark helicity J^Q

$$L_{z}q = -1 \qquad L_{z}q = 0 \qquad L_{z}q = 1 \qquad L_{z}q = 2$$

$$(\uparrow \uparrow \uparrow)_{LC} \qquad (\uparrow \uparrow \downarrow)_{LC} \qquad (\uparrow \downarrow \downarrow)_{LC} \qquad (\downarrow \downarrow \downarrow)_{LC}$$

$$\langle 0 \mid \epsilon^{ijk} \, u_{i\lambda_i}^\dagger(1) \, \Gamma \, u_{j\lambda_j}^\dagger(2) d_{k\lambda_k}^\dagger(3) \mid P \rangle \quad \boxed{ \begin{array}{c} \\ \\ \\ \end{array}} \quad \begin{array}{c} \text{parity} \\ \text{time reversal} \\ \text{isospin symmetry} \end{array}$$

6 independent wave function amplitudes: $\psi^{(i)}$ i=1,...,6



* classification of LCWFs in angular momentum components

[Ji, J.P. Ma, Yuan, 03; Burkardt, Ji, Yuan, 02]

$$|P,\uparrow\rangle = |P,\uparrow\rangle_{-\frac{3}{2}}^{L_z=2} + |P,\uparrow\rangle_{-\frac{1}{2}}^{L_z=1} + |P,\uparrow\rangle_{\frac{1}{2}}^{L_z=0} + |P,\uparrow\rangle_{\frac{3}{2}}^{L_z=-1}$$

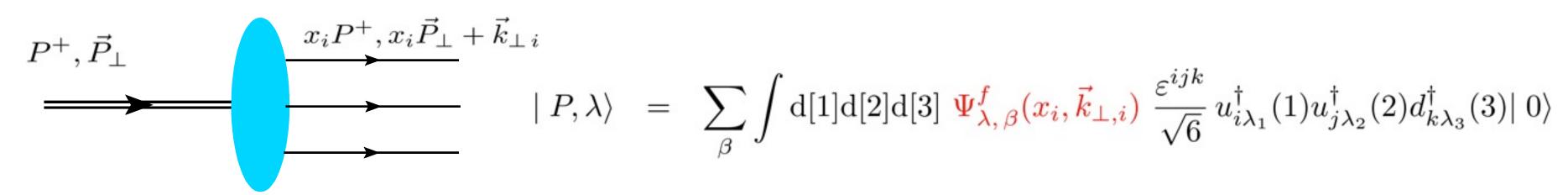
$$|J_z| = |J_z| + |J_z|$$
 total quark helicity J^q

$$L_{z}q = -1 \qquad L_{z}q = 0 \qquad L_{z}q = 1 \qquad L_{z}q = 2$$

$$(\uparrow \uparrow \uparrow)_{LC} \qquad (\uparrow \uparrow \downarrow)_{LC} \qquad (\uparrow \downarrow \downarrow)_{LC} \qquad (\downarrow \downarrow \downarrow)_{LC}$$

$$\langle 0 \mid \epsilon^{ijk} \, u_{i\lambda_i}^\dagger(1) \, \Gamma \, u_{j\lambda_j}^\dagger(2) d_{k\lambda_k}^\dagger(3) \mid P \rangle \quad \boxed{ \begin{array}{c} \\ \\ \\ \end{array}} \quad \begin{array}{c} \text{parity} \\ \text{time reversal} \\ \text{isospin symmetry} \end{array}$$

6 independent wave function amplitudes: $\psi^{(i)}$ i=1,...,6



classification of LCWFs in angular momentum components

[Ji, J.P. Ma, Yuan, 03; Burkardt, Ji, Yuan, 02]

$$|P,\uparrow\rangle = |P,\uparrow\rangle_{-\frac{3}{2}}^{L_z=2} + |P,\uparrow\rangle_{-\frac{1}{2}}^{L_z=1} + |P,\uparrow\rangle_{\frac{1}{2}}^{L_z=0} + |P,\uparrow\rangle_{\frac{3}{2}}^{L_z=-1}$$

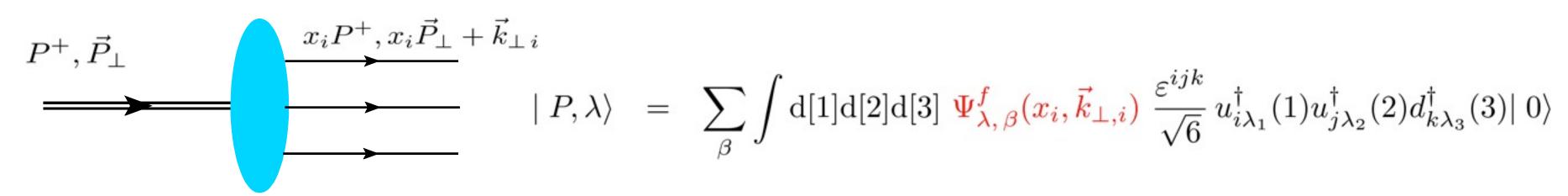
$$|J_z| = |J_z| + |J_z|$$
 total quark helicity J^q

$$L_{z}q = -1 \qquad L_{z}q = 0 \qquad L_{z}q = 1 \qquad L_{z}q = 2$$

$$(\uparrow \uparrow \uparrow)_{LC} \qquad (\uparrow \uparrow \downarrow)_{LC} \qquad (\uparrow \downarrow \downarrow)_{LC} \qquad (\downarrow \downarrow \downarrow)_{LC}$$

$$\langle 0 \mid \epsilon^{ijk} \, u_{i\lambda_i}^\dagger(1) \, \Gamma \, u_{j\lambda_j}^\dagger(2) d_{k\lambda_k}^\dagger(3) \mid P \rangle \quad \boxed{ \begin{array}{c} \\ \\ \\ \end{array}} \quad \begin{array}{c} \text{parity} \\ \text{time reversal} \\ \text{isospin symmetry} \end{array}$$

6 independent wave function amplitudes: $\psi^{(i)}$ i=1,..,6



classification of LCWFs in angular momentum components

[Ji, J.P. Ma, Yuan, 03; Burkardt, Ji, Yuan, 02]

$$|P,\uparrow\rangle = |P,\uparrow\rangle_{-\frac{3}{2}}^{L_z=2} + |P,\uparrow\rangle_{-\frac{1}{2}}^{L_z=1} + |P,\uparrow\rangle_{\frac{1}{2}}^{L_z=0} + |P,\uparrow\rangle_{\frac{3}{2}}^{L_z=-1}$$

$$|J_z = J_z^q + L_z^q$$
 total quark helicity J^q

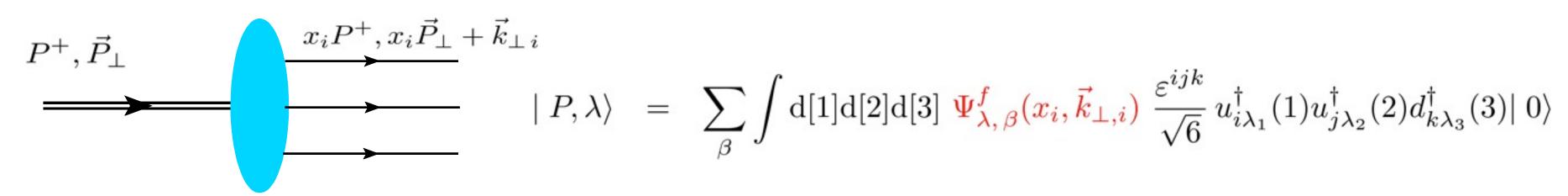
$$L_{z}q = -1 \qquad L_{z}q = 0 \qquad L_{z}q = 1 \qquad L_{z}q = 2$$

$$(\uparrow \uparrow \uparrow)_{LC} \qquad (\uparrow \uparrow \downarrow)_{LC} \qquad (\uparrow \downarrow \downarrow)_{LC} \qquad (\downarrow \downarrow \downarrow)_{LC}$$

$$\langle 0 \mid \epsilon^{ijk} \, u^\dagger_{i\lambda_i}(1) \, \Gamma \, u^\dagger_{j\lambda_j}(2) d^\dagger_{k\lambda_k}(3) \mid P \rangle \quad \boxed{ \begin{array}{c} \text{parity} \\ \text{time reversal} \\ \text{isospin symmetry} \end{array} }$$

6 independent wave function amplitudes: $\psi^{(i)}$ i=1,...,6

$$\begin{array}{lcl} & \begin{array}{lcl} \mathbf{L_z}^{\mathbf{q}\,=\,\mathbf{-1}} & |P\uparrow\rangle_{\frac{3}{2}}^{L_z=-1} & = & \int d[1]d[2]d[3] \ (k_2^x-ik_2^y)\psi^{(5)}(1,2,3) \\ & & \times \frac{\epsilon^{ijk}}{\sqrt{6}}u_{i\uparrow}^{\dagger}(1) \left(u_{j\uparrow}^{\dagger}(2)d_{k\uparrow}^{\dagger}(3)-d_{j\uparrow}^{\dagger}(2)u_{k\uparrow}^{\dagger}(3)\right)|0\rangle \end{array}$$



* classification of LCWFs in angular momentum components

[Ji, J.P. Ma, Yuan, 03; Burkardt, Ji, Yuan, 02]

$$|P,\uparrow\rangle = |P,\uparrow\rangle_{-\frac{3}{2}}^{L_z=2} + |P,\uparrow\rangle_{-\frac{1}{2}}^{L_z=1} + |P,\uparrow\rangle_{\frac{1}{2}}^{L_z=0} + |P,\uparrow\rangle_{\frac{3}{2}}^{L_z=-1}$$

$$|J_z = J_z^q + L_z^q$$
 total quark helicity J^q

$$L_{z}q = -1 \qquad L_{z}q = 0 \qquad L_{z}q = 1 \qquad L_{z}q = 2$$

$$(\uparrow \uparrow \uparrow)_{LC} \qquad (\uparrow \uparrow \downarrow)_{LC} \qquad (\uparrow \downarrow \downarrow)_{LC} \qquad (\downarrow \downarrow \downarrow)_{LC}$$

6 independent wave function amplitudes: $\psi^{(i)}$ i=1,...,6

Relations among TMDs in Quark Models

Linear relations

Quadratic relation

Flavor-dependent

$$D^u = \frac{2}{3}, D^d = -\frac{1}{3}$$

$$D^q f_1^q + g_{1L}^q = 2h_1^q \qquad *$$

$$*2h_1^q h_{1T}^{\perp q} = -(g_{1T}^q)^2$$

Flavor-independent

$$g_{1T}^q = -h_{1L}^{\perp q} \qquad * 2h_1^q h_{1T}^{\perp q} = -(g_{1T}^q)^2$$

$$g_{1L}^q - h_1^q = \frac{k_{\perp}^2}{2M^2} h_{1T}^{\perp q} \qquad * *$$

Bag [Jaffe & Ji (1991), Signal (1997), Barone & al. (2002), Avakian & al. (2008-2010)]

ÂQSM [Lorcé & Pasquini (in preparation)]

LCQM [Pasquini & al. (2005-2008)]

S Diquark [Ma & al. (1996-2009), Jakob & al. (1997), Bacchetta & al. (2008)]

AV Diquark [Ma & al. (1996-2009), Jakob & al. (1997)] [Bacchetta & al. (2008)]

Cov. Parton [Efremov & al. (2009)]

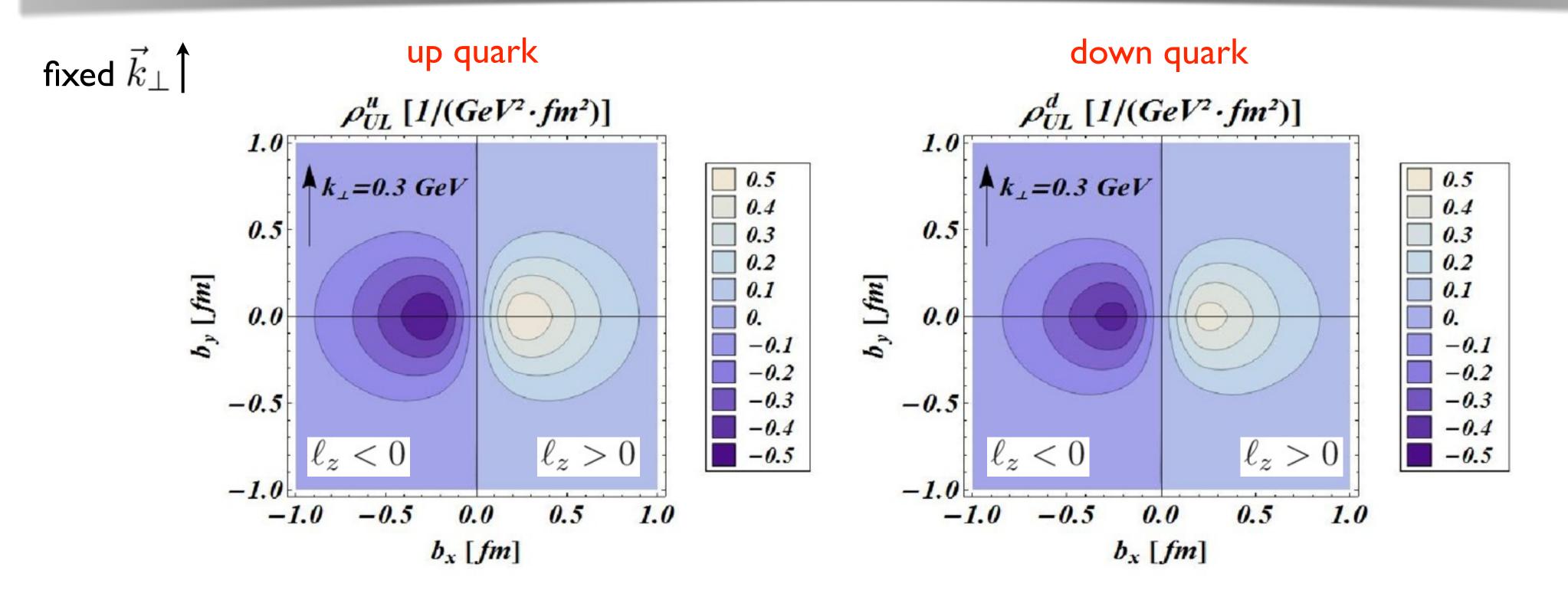
Quark Target [Meißner & al. (2007)]

Common assumptions:

➢ No gluons

Independent quarks

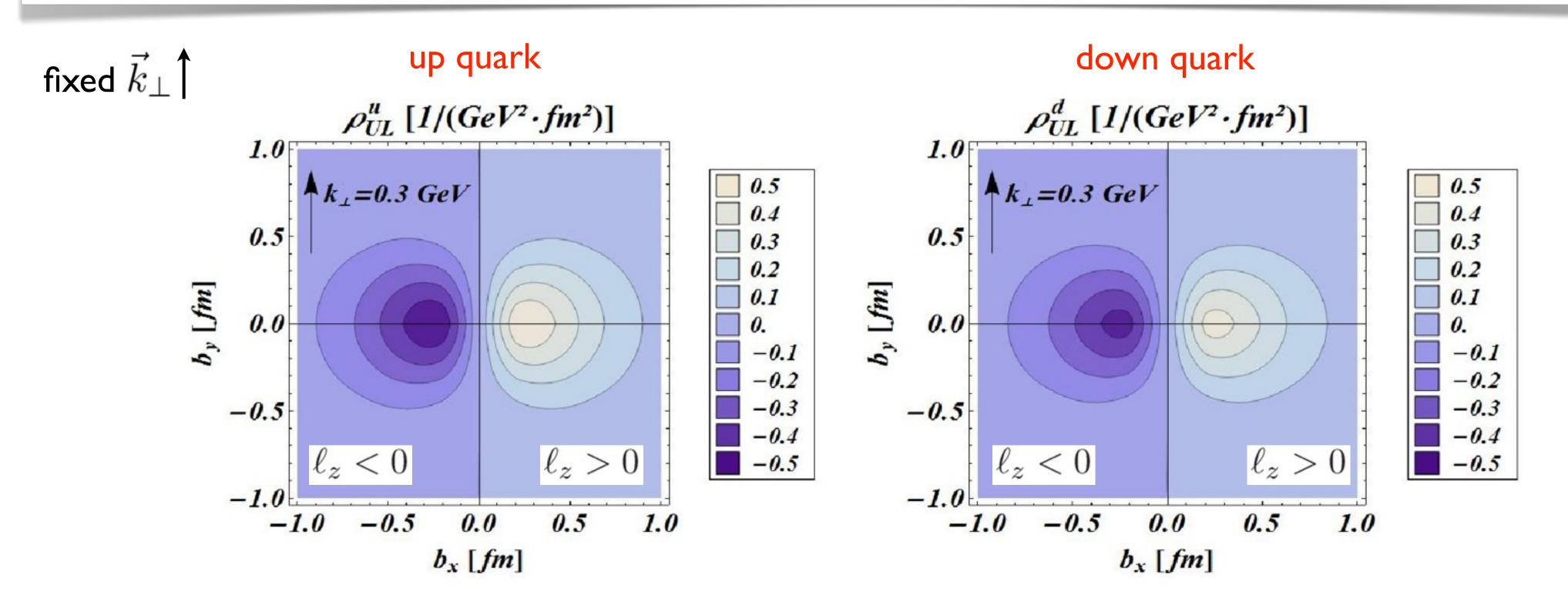
Long. pol. quark in Unpol. Proton



◆ projection to GPD and TMD is vanishing

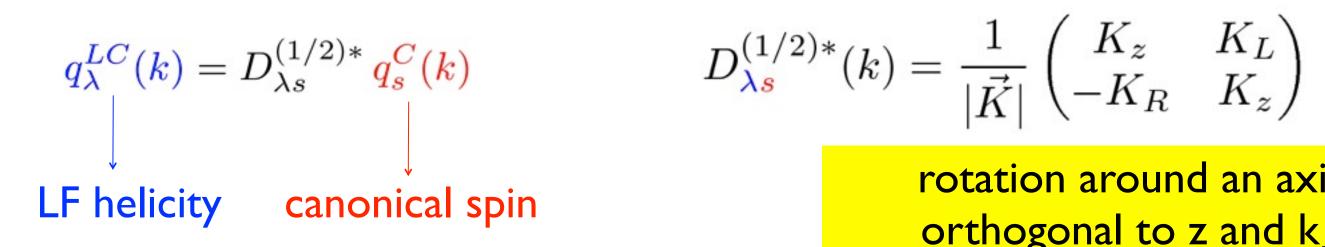
unique information on OAM from Wigner distributions

Long. pol. quark in Unpol. Proton



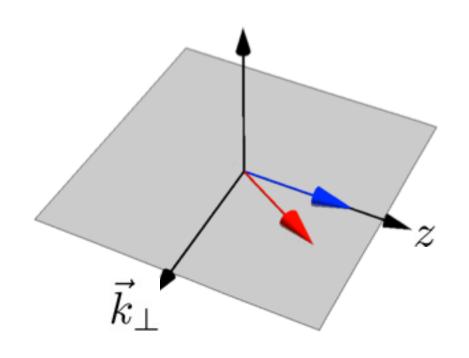
correlation between quark spin and quark OAM

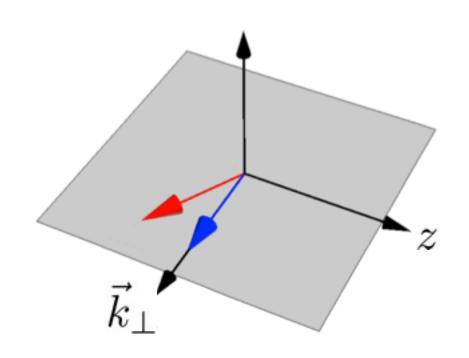
Light-Cone Helicity and Canonical Spin

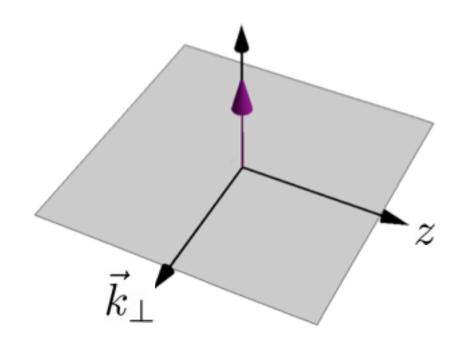


$$D_{\lambda s}^{(1/2)*}(k) = \frac{1}{|\vec{K}|} \begin{pmatrix} K_z & K_L \\ -K_R & K_z \end{pmatrix}$$

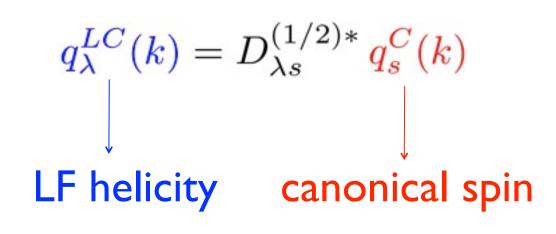
rotation around an axis orthogonal to z and k_{\perp}





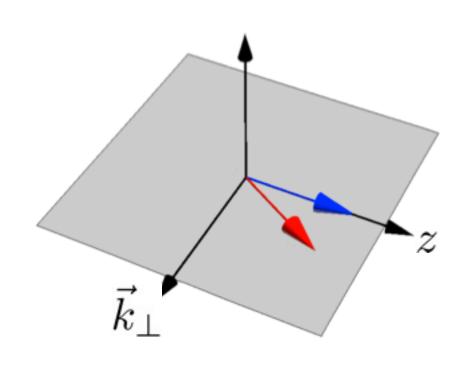


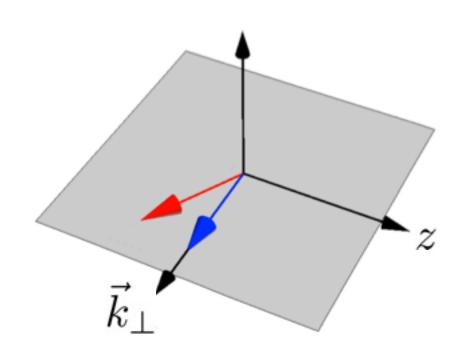
Light-Cone Helicity and Canonical Spin

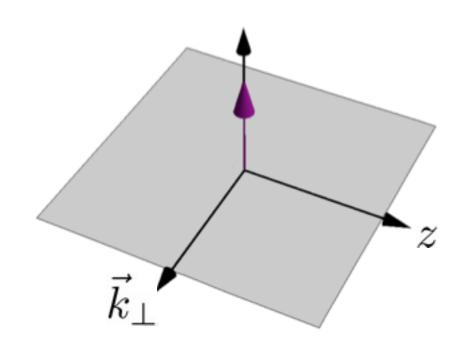


$$D_{\lambda s}^{(1/2)*}(k) = \frac{1}{|\vec{K}|} \begin{pmatrix} K_z & K_L \\ -K_R & K_z \end{pmatrix}$$

rotation around an axis orthogonal to z and k_{\perp}







Light-Front CQM

$$K_z = m + x\mathcal{M}_0$$

$$\vec{K}_{\perp} = \vec{k}_{\perp}$$

$$k_z = x\mathcal{M}_0 - \sqrt{\vec{k}^2 + m^2}$$
 $k_z = x\mathcal{M}_N - E_{\text{lev}}$

Chiral Quark-Soliton Model

$$K_z = h(|\vec{k}|) + \frac{k_z}{|\vec{k}|} j(|\vec{k}|)$$

$$\vec{K}_{\perp} = \frac{\vec{k}_{\perp}}{|\vec{k}|} j(|\vec{k}|)$$

$$k_z = x\mathcal{M}_N - E_{\text{lev}}$$

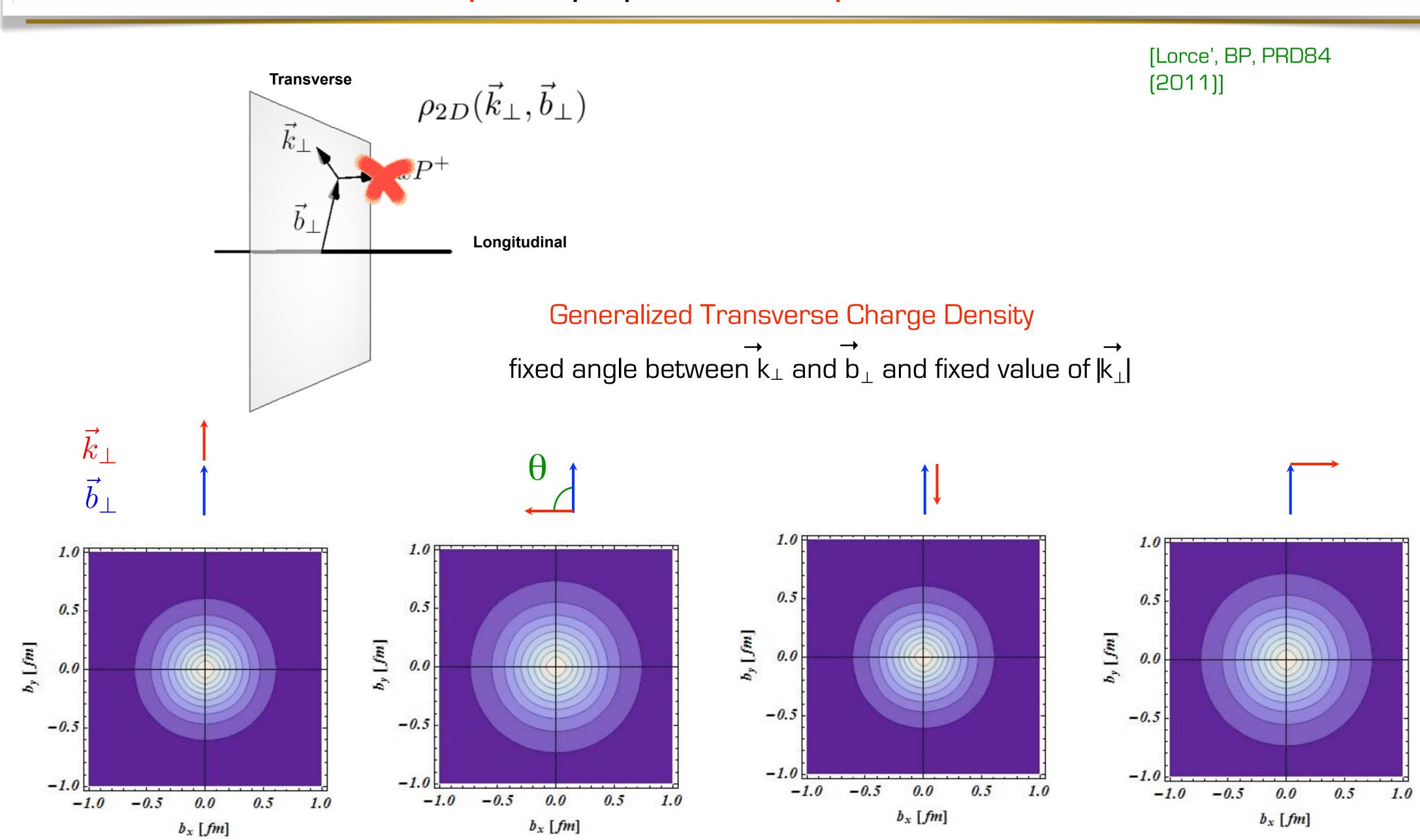
Bag Model

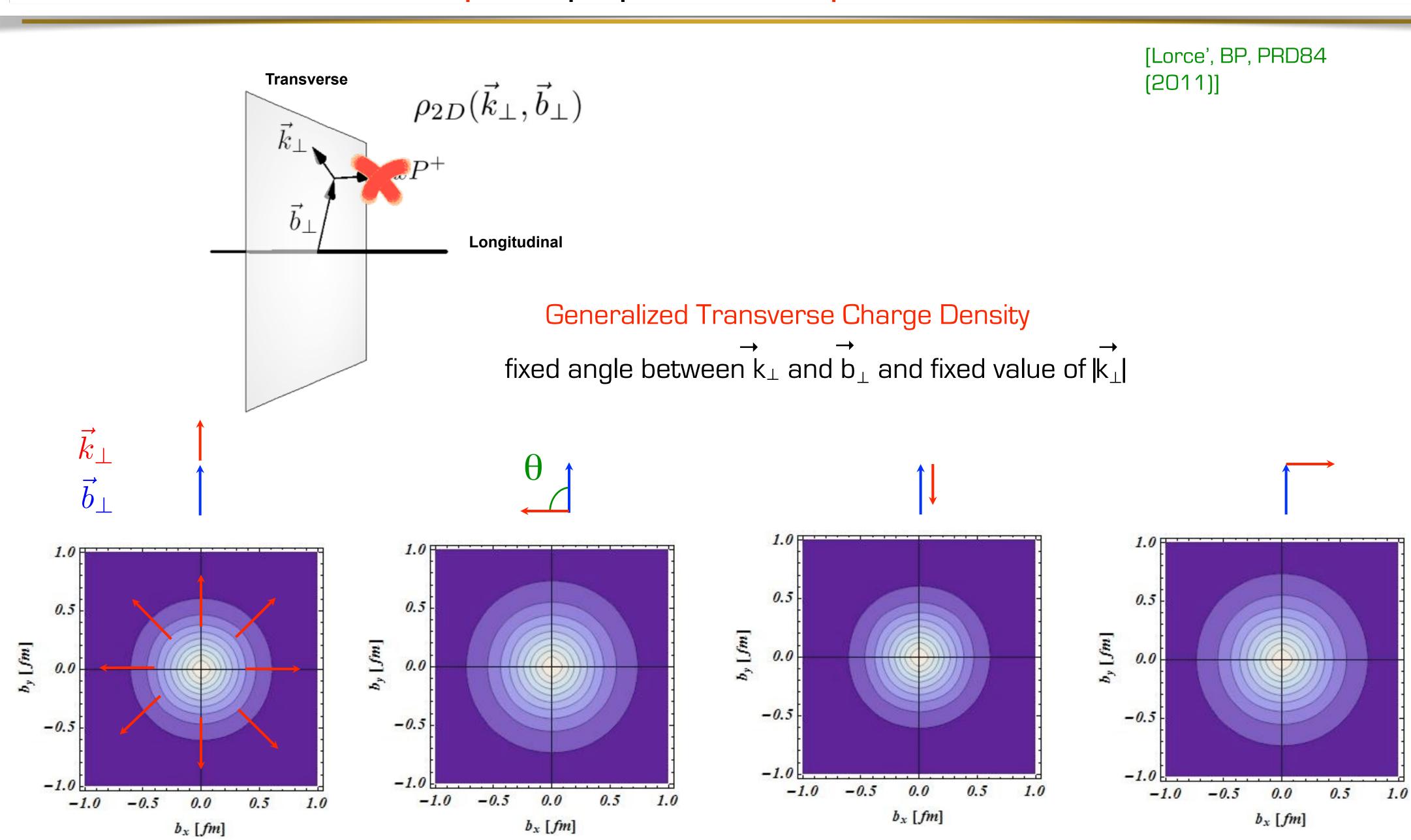
$$K_z = t_0(|\vec{k}|) + \frac{k_z}{|\vec{k}|} t_1(|\vec{k}|)$$

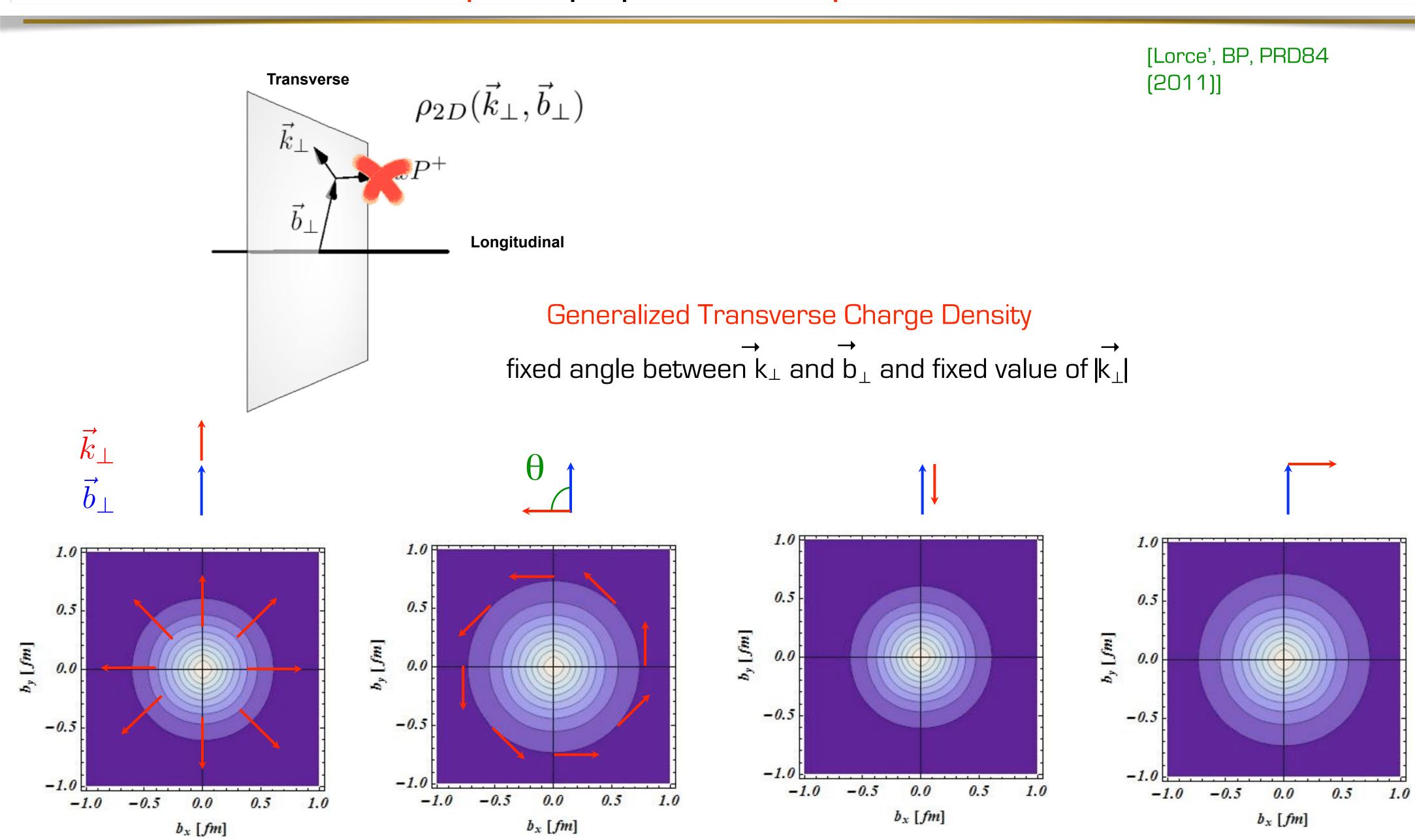
$$\vec{K}_{\perp} = \frac{\vec{k}_{\perp}}{|\vec{k}|} t_1(|\vec{k}|)$$

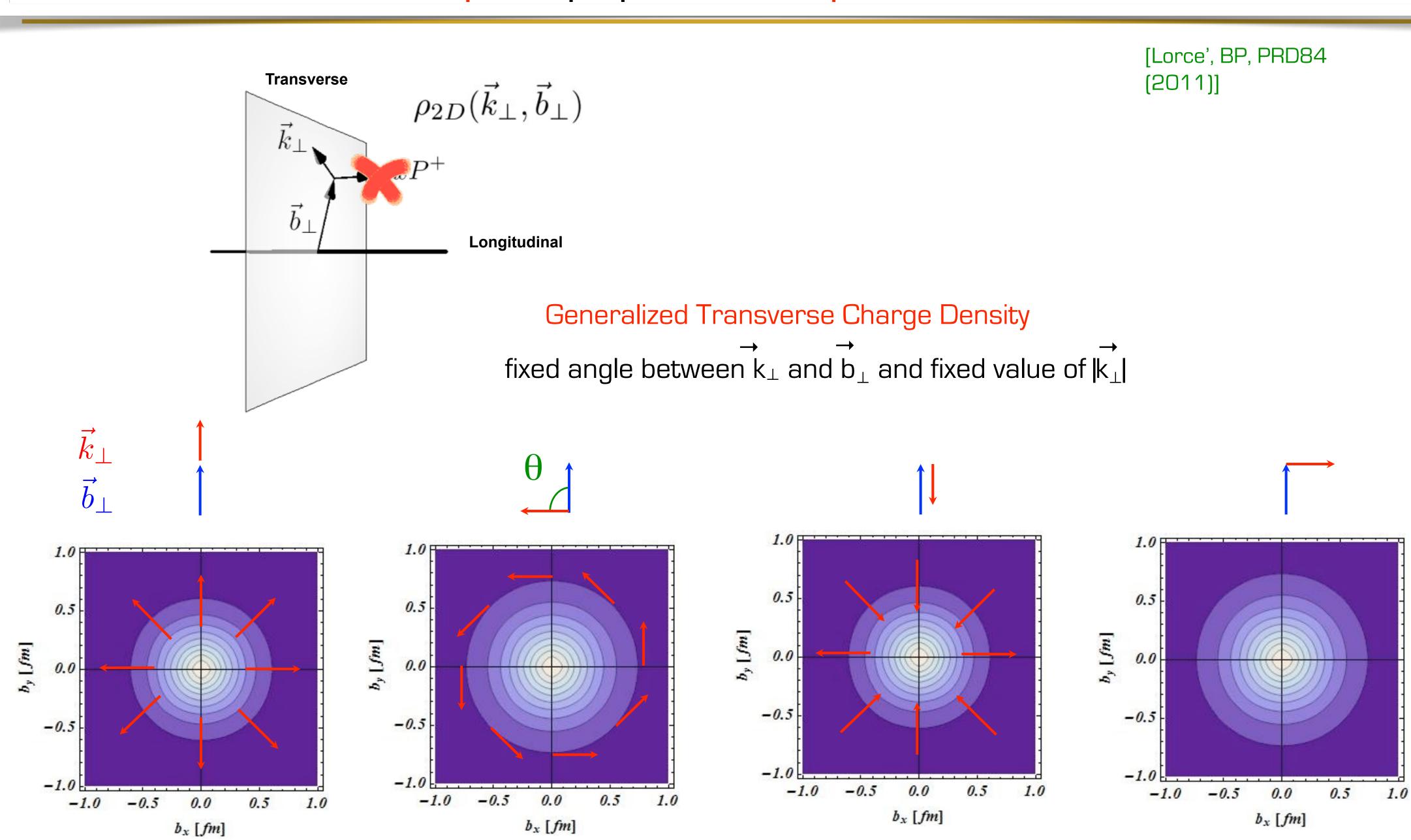
$$k_z = x\mathcal{M}_N - \omega/R_0$$

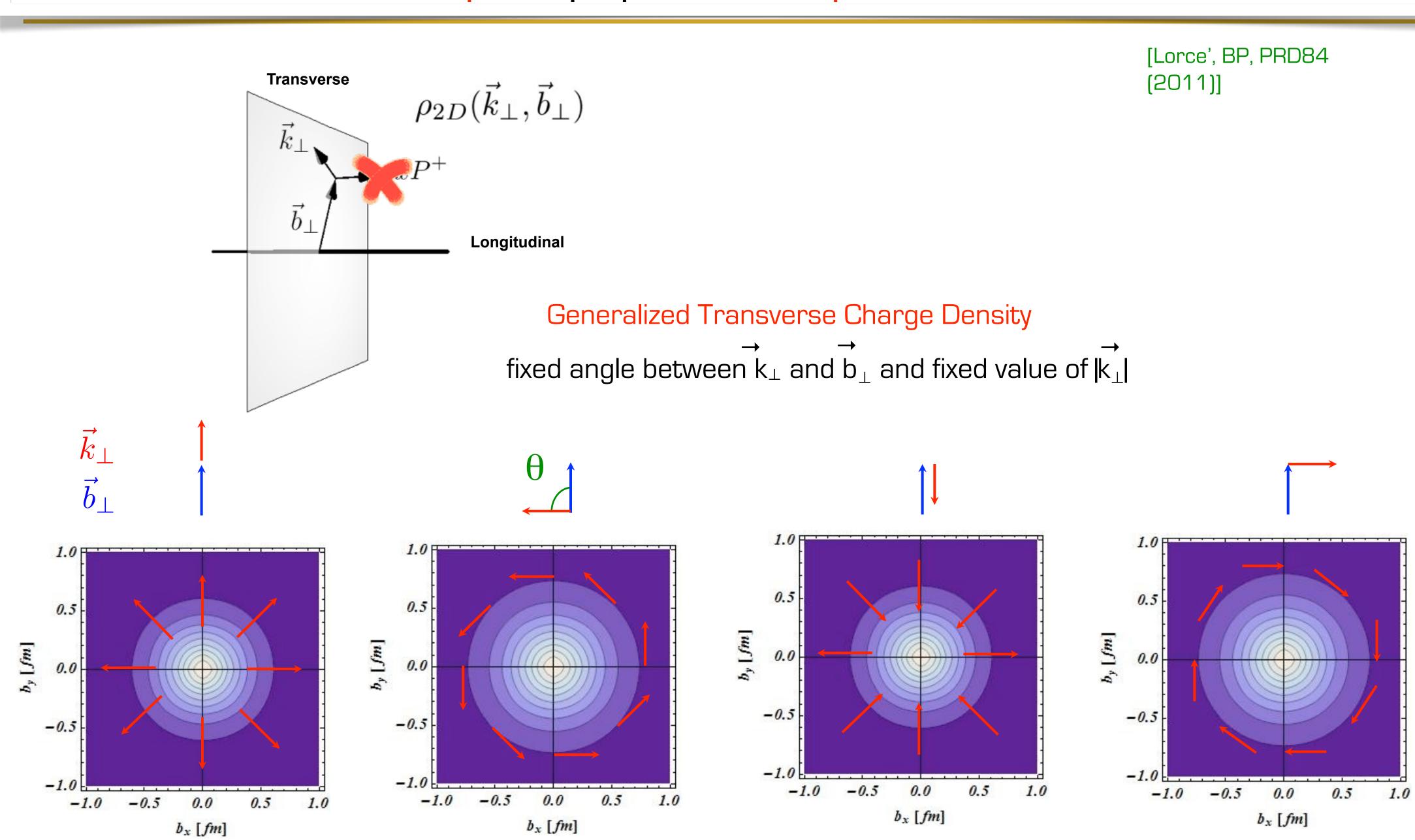
(Melosh rotation)



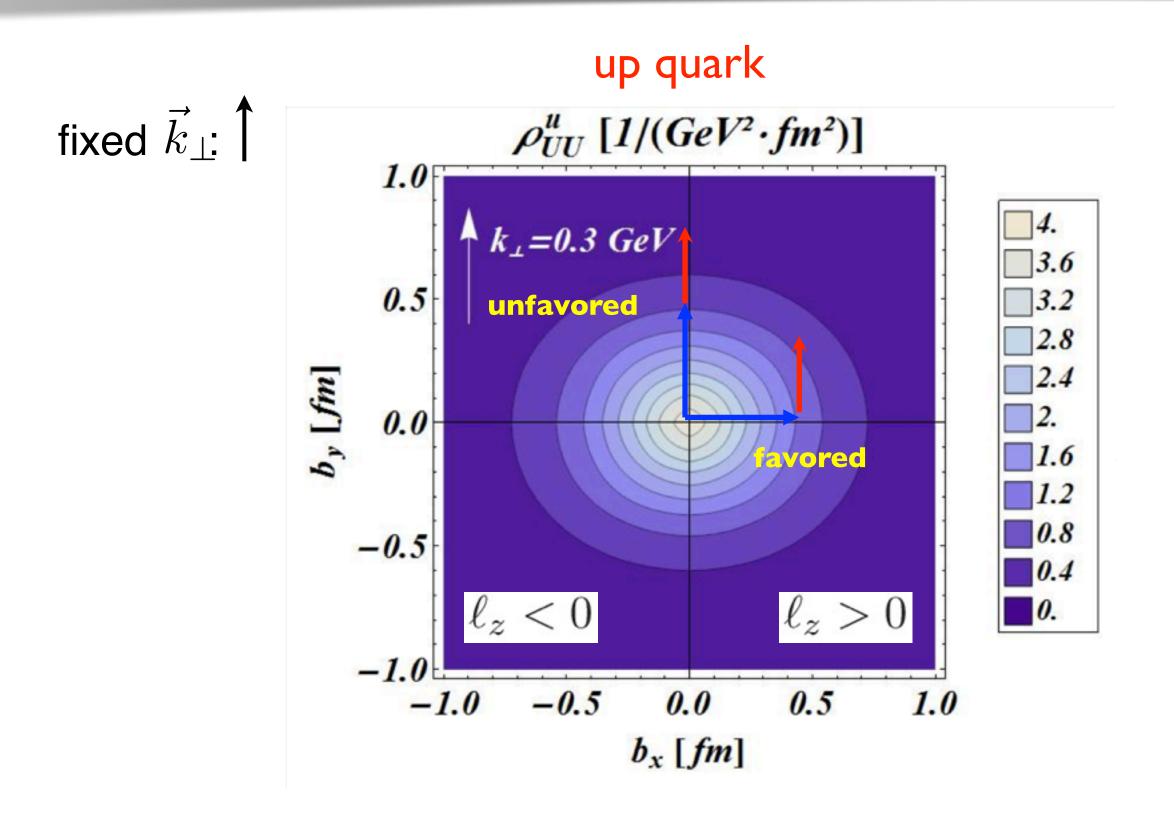


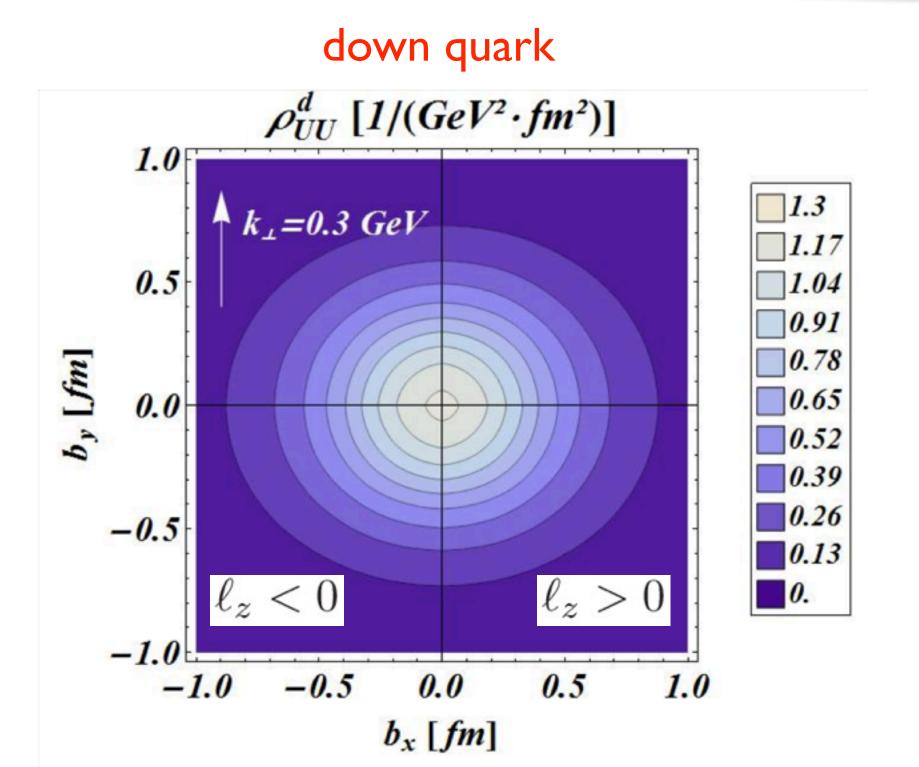






Unpol. quarks in Unpol. Proton



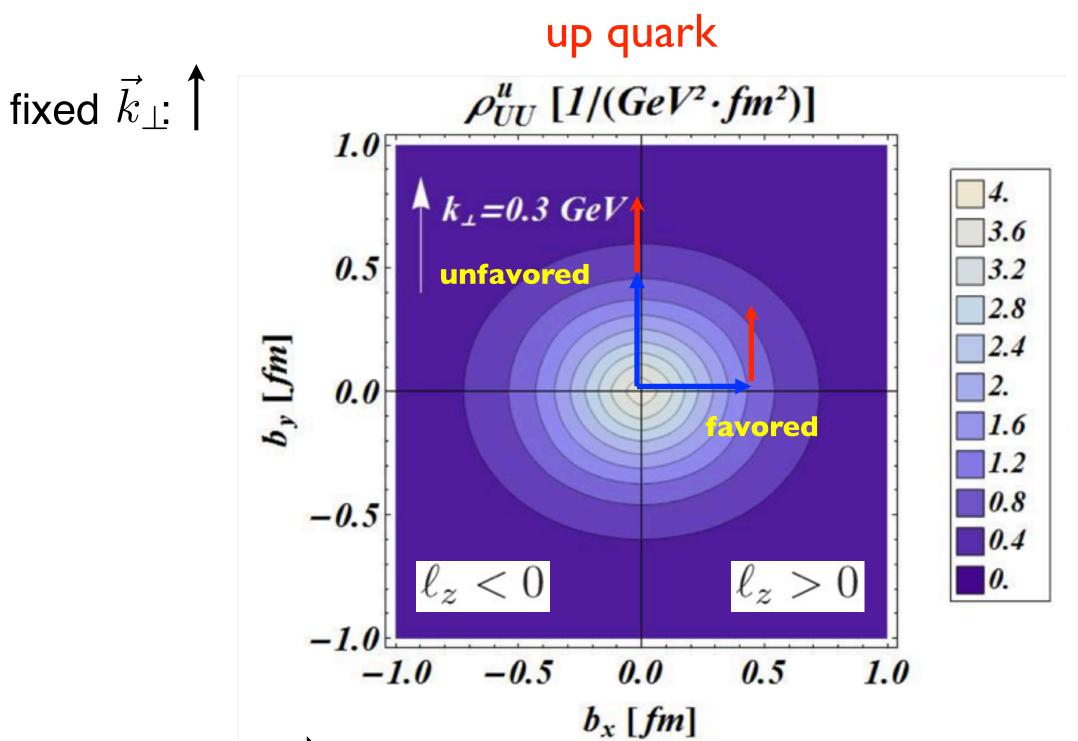


Distortion due to correlations between $ec{k}_{\perp}$ and $ec{b}_{\perp}$

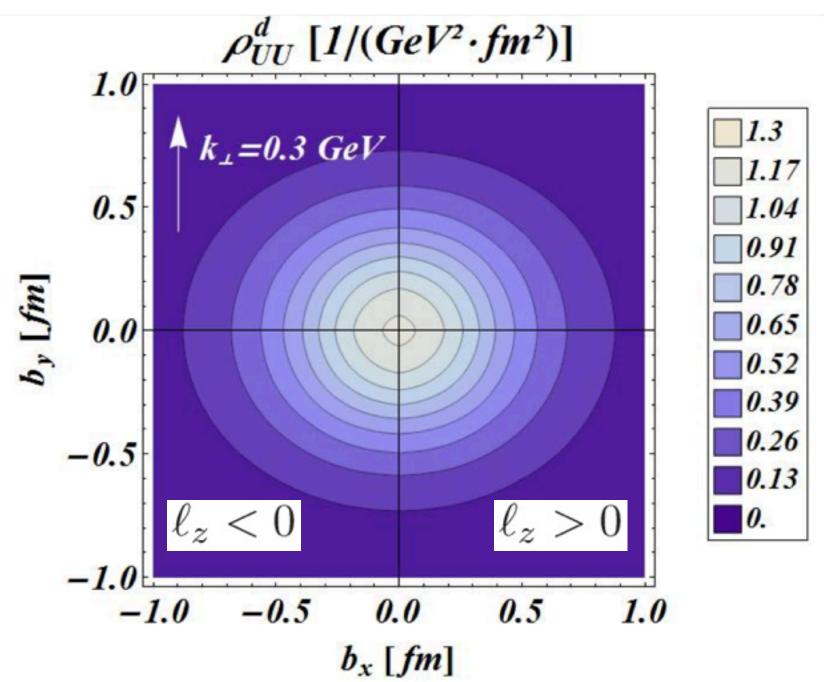
absent in **GPD** and **TMD**!

Left-right symmetry ———— no net quark OAM

Unpol. quarks in Unpol. Proton



down quark



 \blacklozenge integrating over $\vec{b}_{\perp} \Longrightarrow$ transverse-momentum density

$$f_1^q(k_{\perp}^2) = \int dx f_1^q(x, k_{\perp}^2)$$

lacktriangle integrating over \vec{k}_{\perp} \Longrightarrow charge density in the transverse plane \vec{b}_{\perp}

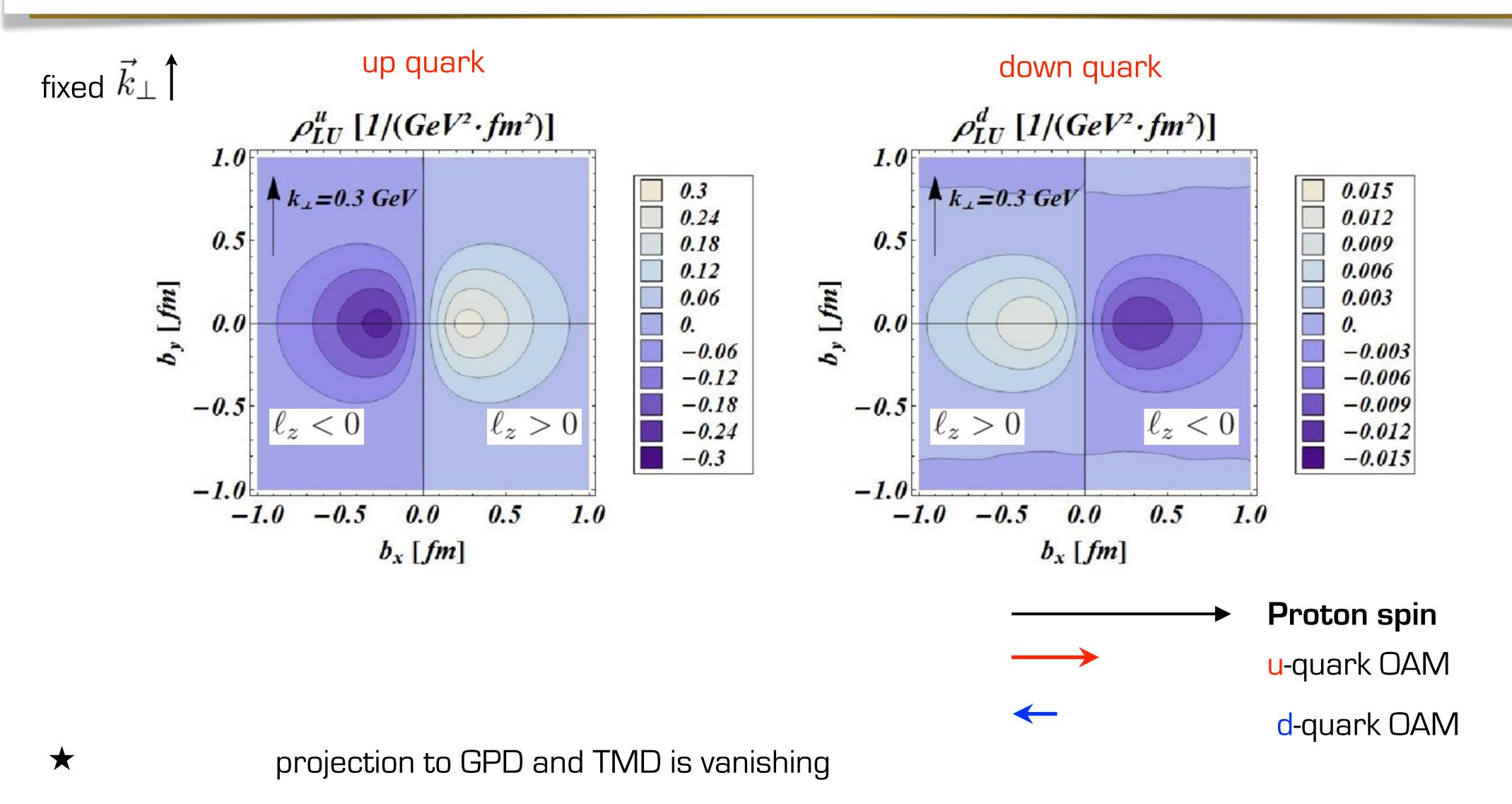
Monopole

Distributions

$$\rho^q(b_\perp^2) = e^q \int d^2 \Delta_\perp e^{-i\vec{b}_\perp \cdot \vec{\Delta}_\perp} F_1^q(\Delta_\perp^2)$$

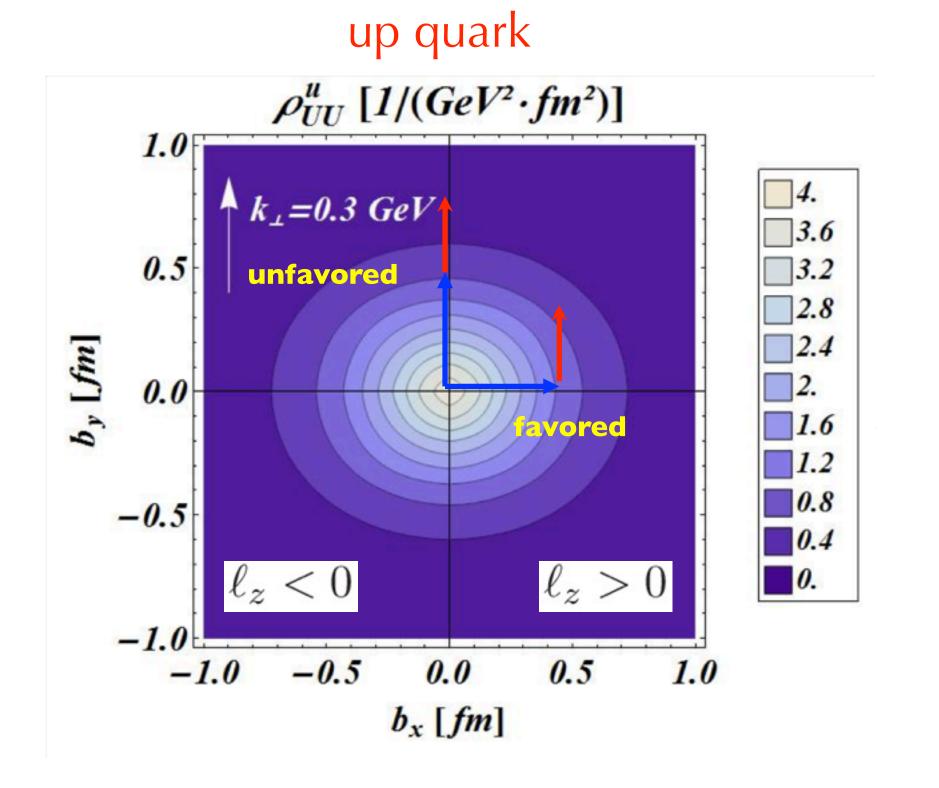
[Miller (2007); Burkardt (2007)]

Unpol. quark in Long. pol. Proton

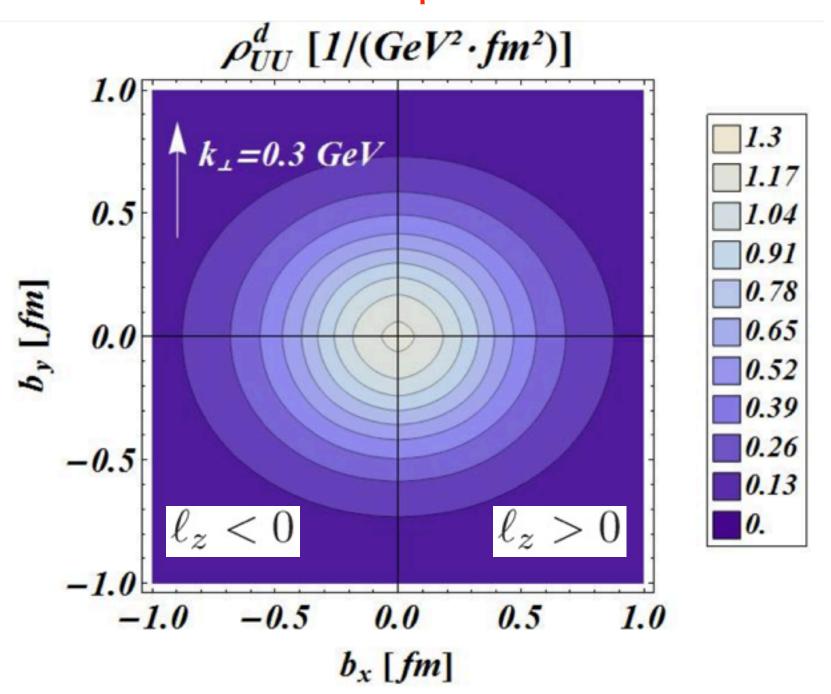


unique information on OAM from Wigner distributions

Unpol. quarks in Unpol. Proton



down quark



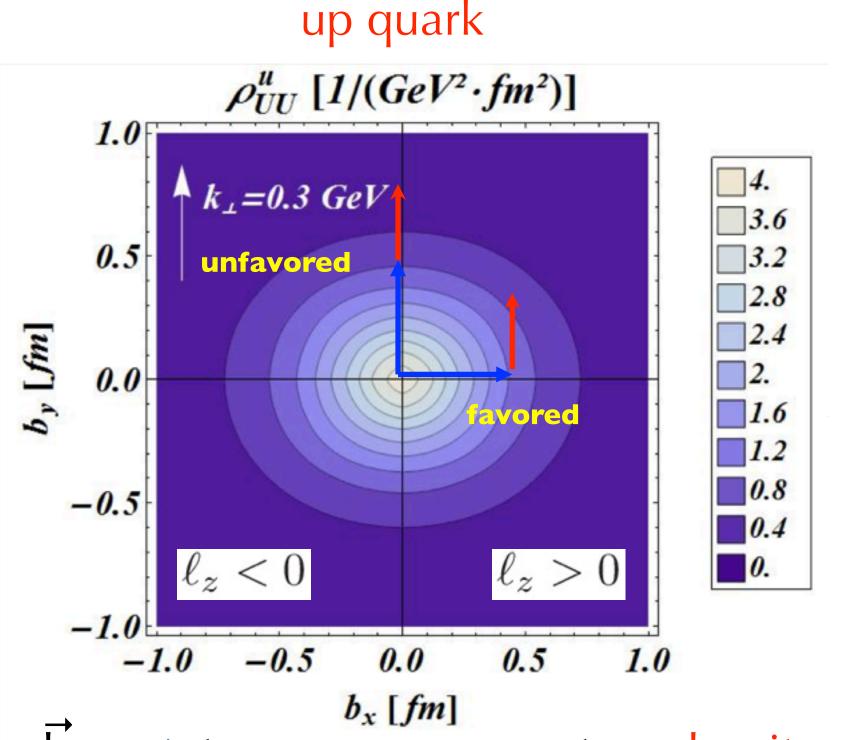
Distortion due to correlations between \vec{k}_{\perp} and \vec{b}_{\perp}

absent in GPD and TMD!

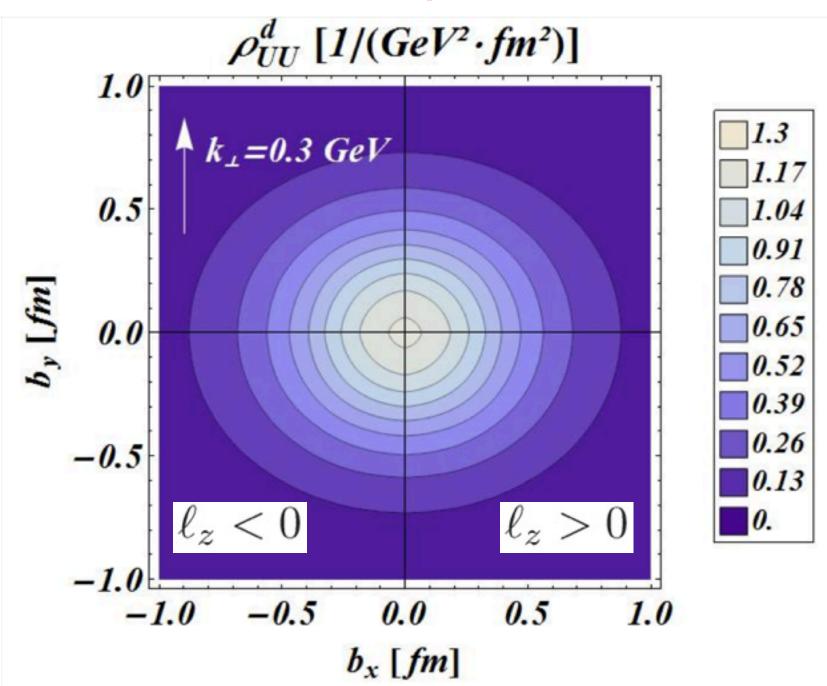
Left-right symmetry • no net quark OAM

Unpol. quarks in Unpol. Proton

fixed \vec{k}_{\perp} :



down quark



• integrating over $\vec{b}_{\perp} \longrightarrow \text{transverse-momentum density}$

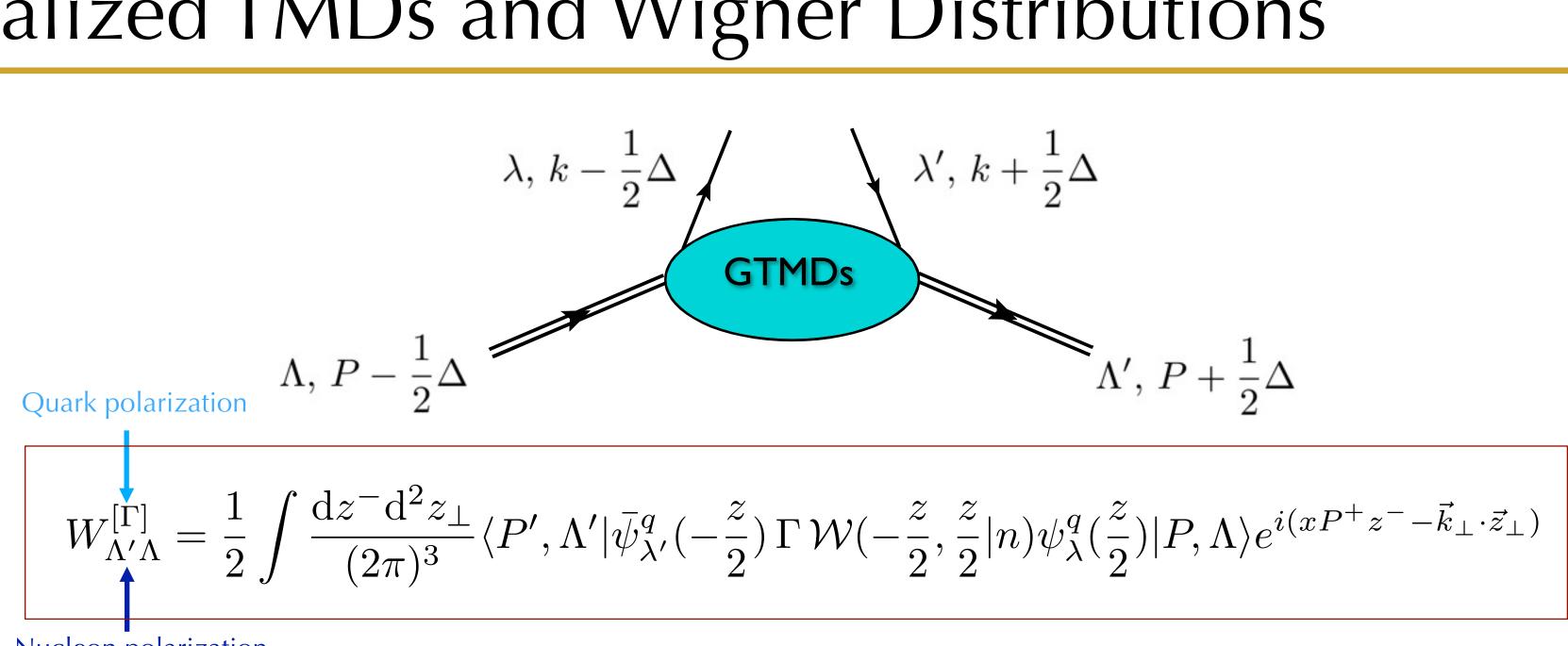
$$f_1^q(k_{\perp}^2) = \int dx f_1^q(x, k_{\perp}^2)$$

• integrating over $\vec{k}_{\perp} \longrightarrow$ charge density in the transverse plane \vec{b}_{\perp}

$$\rho^q(b_\perp^2) = e^q \int \mathrm{d}^2 \Delta_\perp e^{-i\vec{b}_\perp \cdot \vec{\Delta}_\perp} F_1^q(\Delta_\perp^2)$$

Monopole Distributions

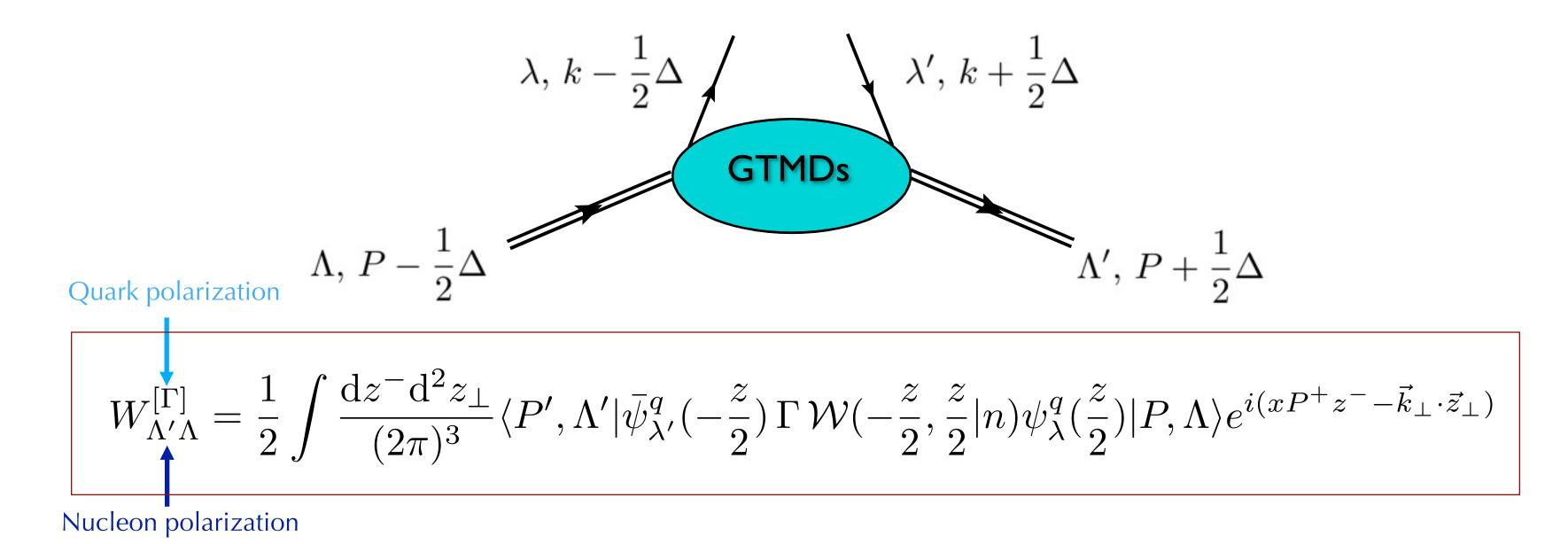
Generalized TMDs and Wigner Distributions



Nucleon polarization

4 X 4 = 16 polarizations 16 complex GTMDs (at twist-2)
$$W_{\Lambda',\Lambda}^{\Gamma}(x,\xi,\vec{k}_{\perp},\vec{\Delta}_{\perp})$$

Generalized TMDs and Wigner Distributions



4 X 4 = 16 polarizations

16 complex GTMDs (at twist-2)

$$W^{\Gamma}_{\Lambda',\Lambda}(x,\xi,\vec{k}_{\perp},\vec{\Delta}_{\perp})$$

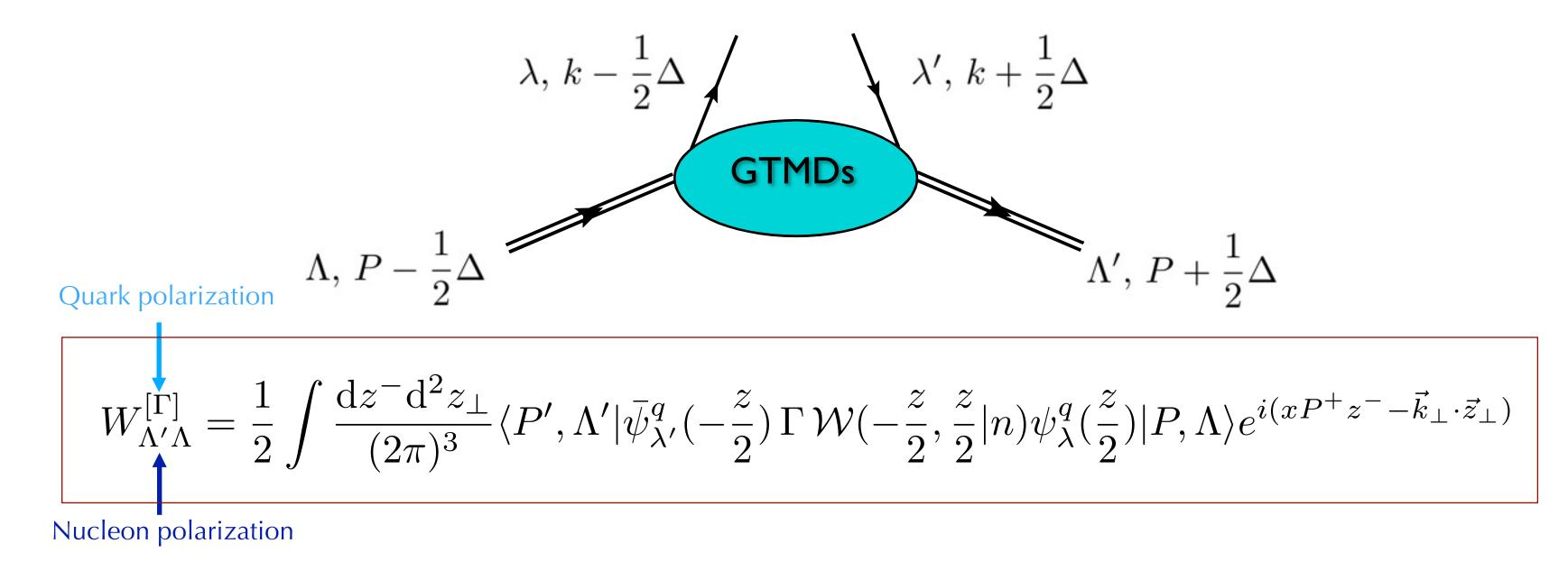
x: average fraction of quark longitudinal momentum

ξ: fraction of longitudinal momentum transfer

k⊥: average quark transverse momentum

 $\overrightarrow{\Delta}_{\perp}$: nucleon transverse-momentum

Generalized TMDs and Wigner Distributions

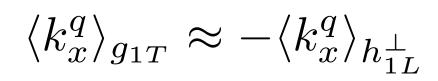


4 X 4 =16 polarizations 16 complex GTMDs (at twist-2) $W_{\Lambda',\Lambda}^{\Gamma}(x,\xi,\vec{k}_{\perp},\vec{\Delta}_{\perp})$

Fourier transform
$$\vec{\Delta}_{\perp} \leftrightarrow \vec{b}_{\perp}$$

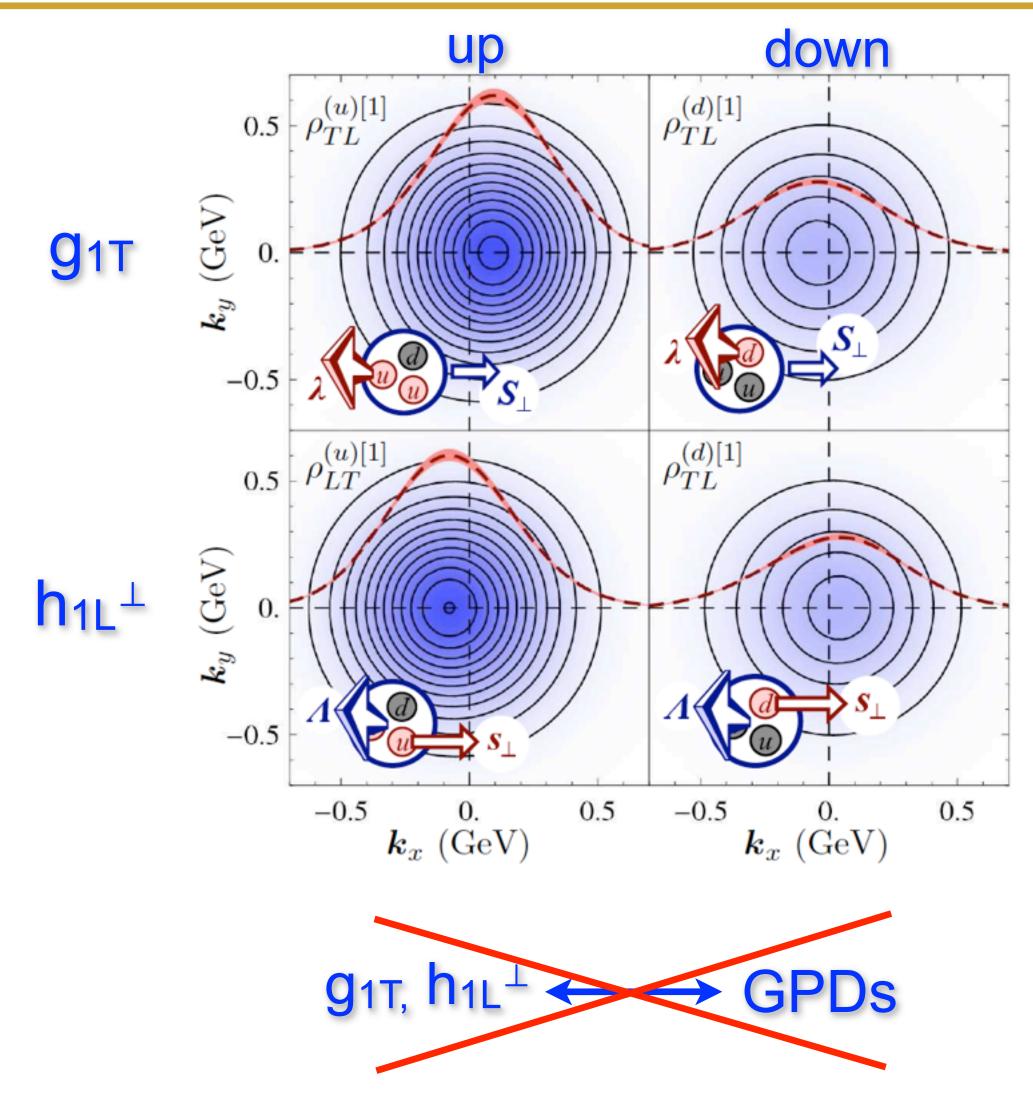
$$\tilde{W}^{\Gamma}_{\Lambda',\Lambda}(x,\xi,\vec{k}_{\perp},\vec{b}_{\perp}) \ \ \text{16 real Wigner distributions}$$

Pioneering lattice QCD studies



consistent with model calculations

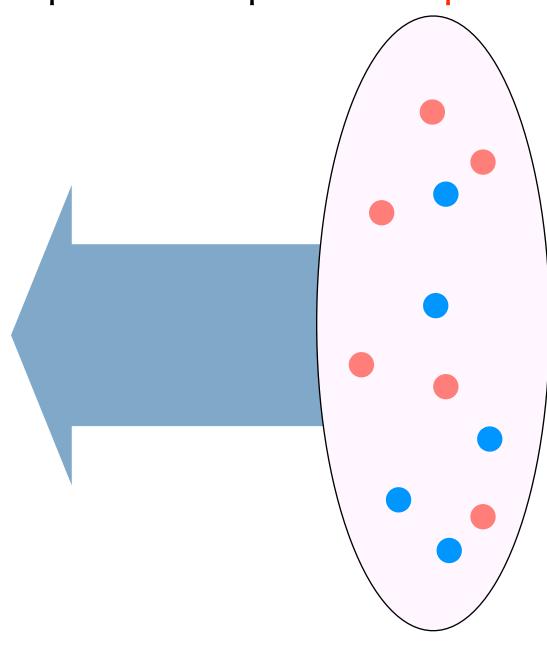
BP, et al., PRD **78** (2008) 034025



genuine effect of intrinsic transverse momentum of quarks!

Model relation TMD ← GPD

unpolarized quark in unpolarized nucleon



$$-\int d^2\vec{k}_T \, k_T^i \, \frac{\epsilon_T^{jk} k_T^j S_T^k}{M} \, f_{1T}^{\perp q}(x, \vec{k}_T^2) \, \simeq \int d^2\vec{b}_T \, \mathcal{I}^{q,i}(x, \vec{b}_T) \, \frac{\epsilon_T^{jk} b_T^j S_T^k}{M} \left(\mathcal{E}^q(x, \vec{b}_T^2) \right)'$$
Sivers function Lensing function F.T. of E(x,0,t)

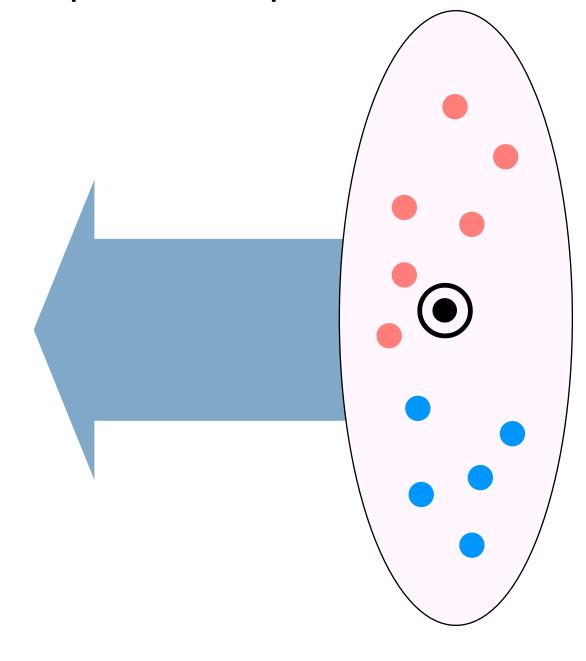
Burkardt, PRD **66** (2002) 114005

Burkardt, Pasquini, EPJ A**52** (2016) 161

Model relation TMD ← GPD

unpolarized quark in transversely pol. nucleon

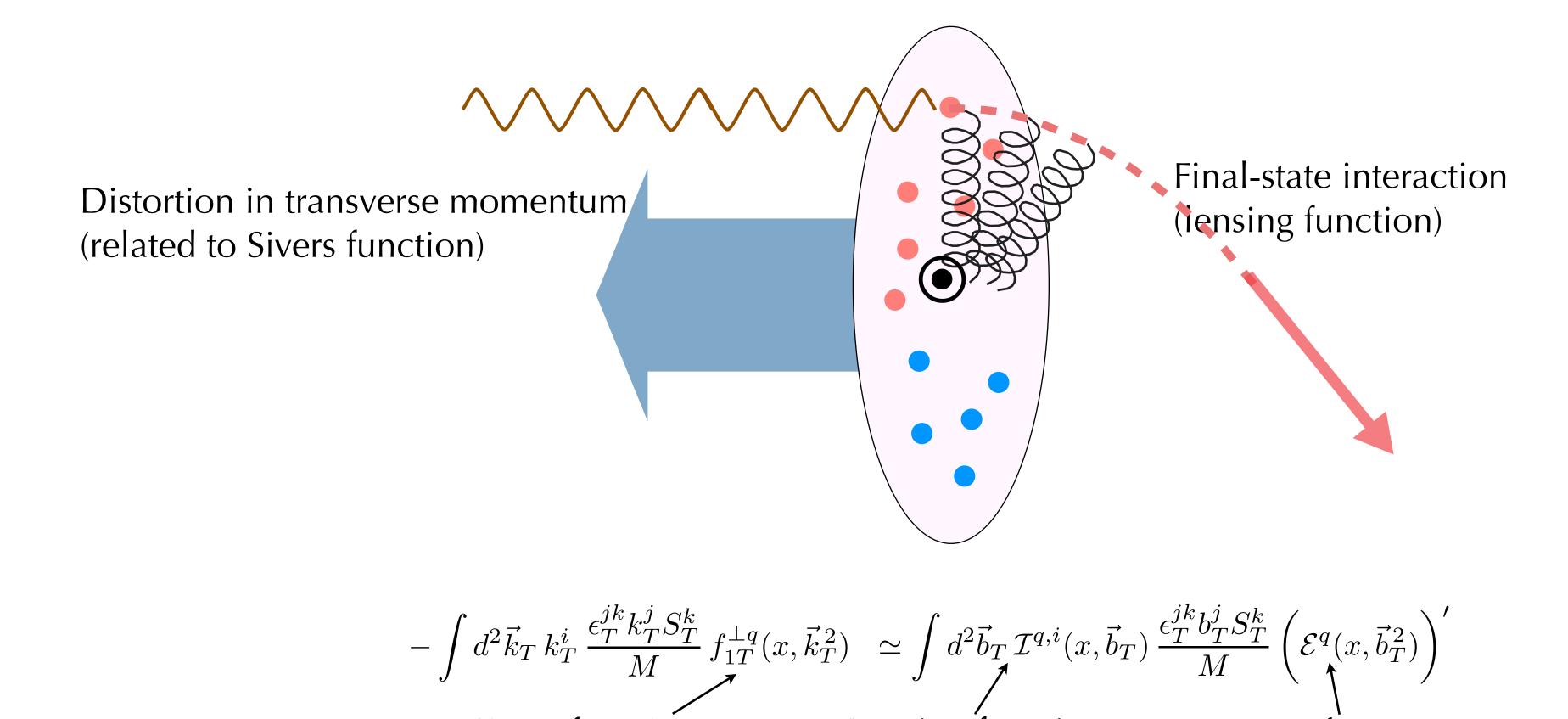
Distortion in impact parameter (related to GPD E)



$$-\int d^2\vec{k}_T \, k_T^i \, \frac{\epsilon_T^{jk} k_T^j S_T^k}{M} \, f_{1T}^{\perp q}(x, \vec{k}_T^2) \, \simeq \int d^2\vec{b}_T \, \mathcal{I}^{q,i}(x, \vec{b}_T) \, \frac{\epsilon_T^{jk} b_T^j S_T^k}{M} \left(\mathcal{E}^q(x, \vec{b}_T^2) \right)'$$
Sivers function Lensing function F.T. of E(x,0,t)

Burkardt, PRD **66** (2002) 114005

Burkardt, Pasquini, EPJ A**52** (2016) 161



Sivers function Lensing function

Burkardt, PRD **66** (2002) 114005

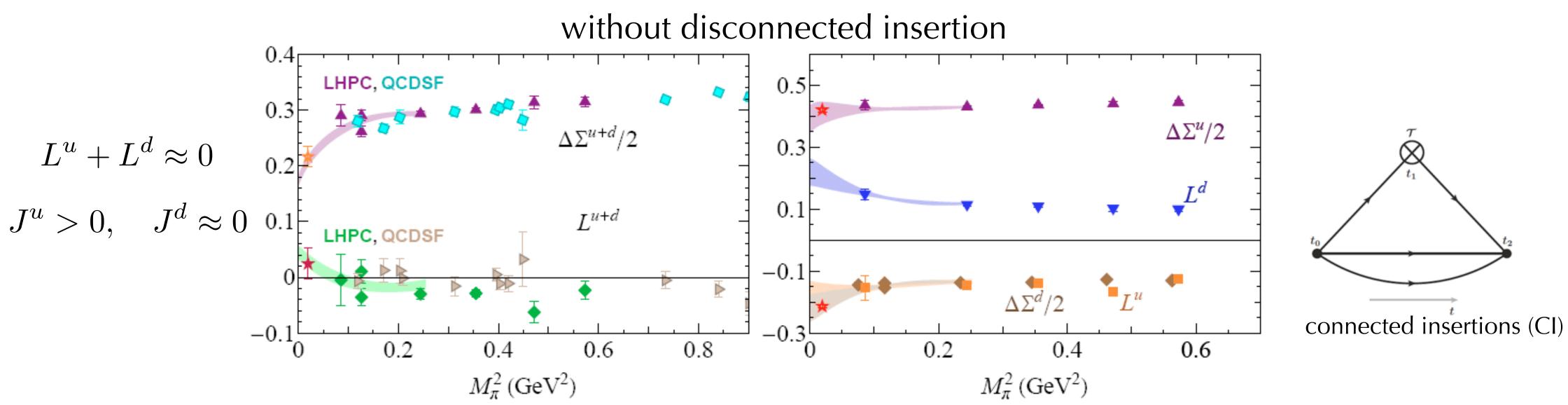
Burkardt, Pasquini, EPJ A**52** (2016) 161

F.T. of E(x,0,t)

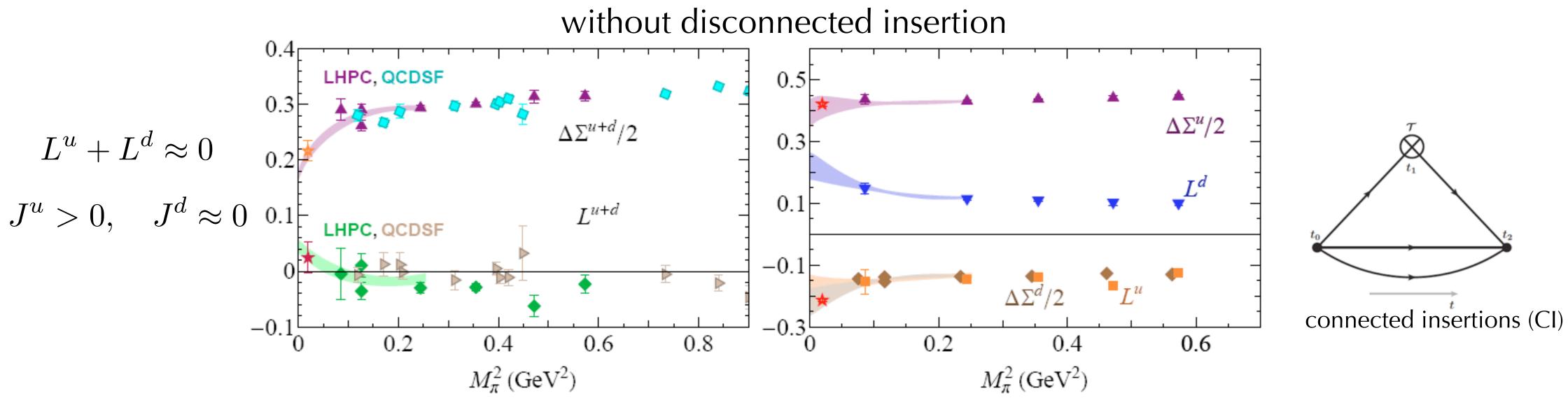
Key information from TMDs

- Spin-Spin and Spin-Orbit Correlations of partons
- Transverse momentum size
- Test what we can calculate with QCD (perturbative and lattice)
- Non-perturbative structure we cannot calculate with QCD

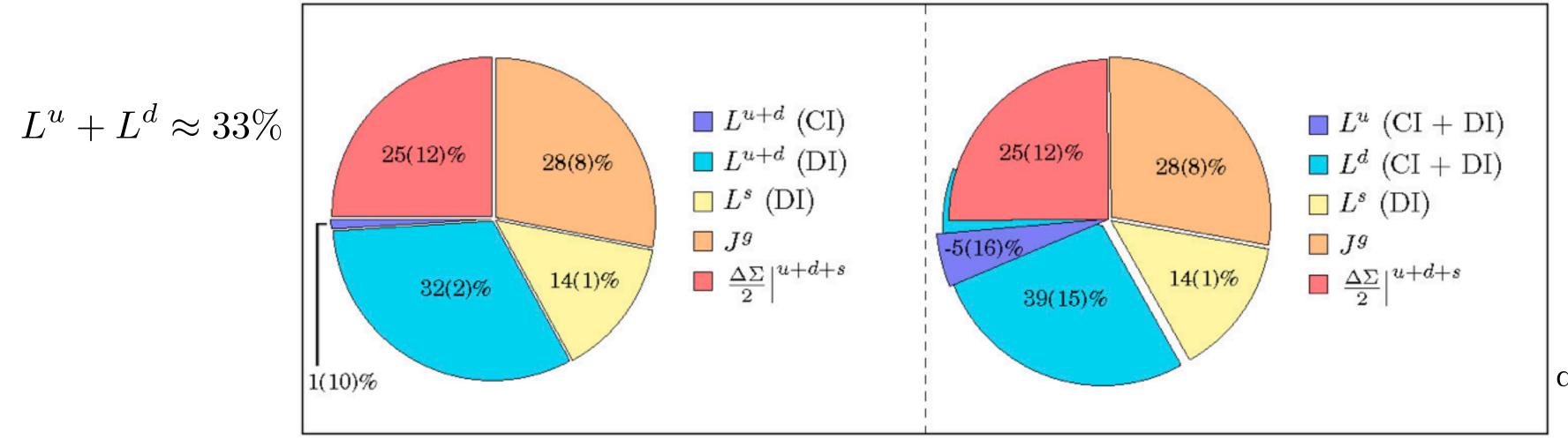
Lattice Calculations of Angular Momentum

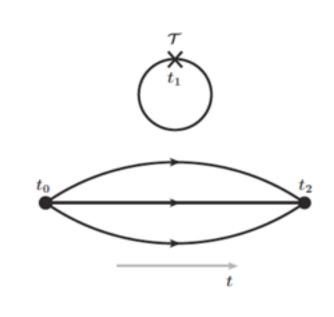


Lattice Calculations of Angular Momentum



with disconnected insertion





disconnected insertions (DI)

Deka et al., PRD 91 (2015) 014505

Angular Momentum Relation ("Ji's Sum Rule")

X. Ji, PRL **78** (1997) 610

quark and gluon contribution to the nucleon spin

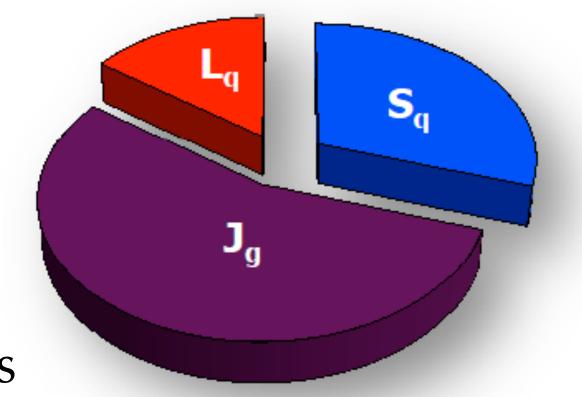
$$J^{q,g} = \frac{1}{2} \int_{-1}^{1} \mathrm{d}x \, x \left(H^{q,g}(x,0,0) + E^{q,g}(x,0,0) \right)$$
 unpolarized PDF not directly accessible

Proton spin decomposition

$$\frac{1}{2}\Delta\Sigma \text{ from DIS}$$

$$J^q = L^q + S^q$$

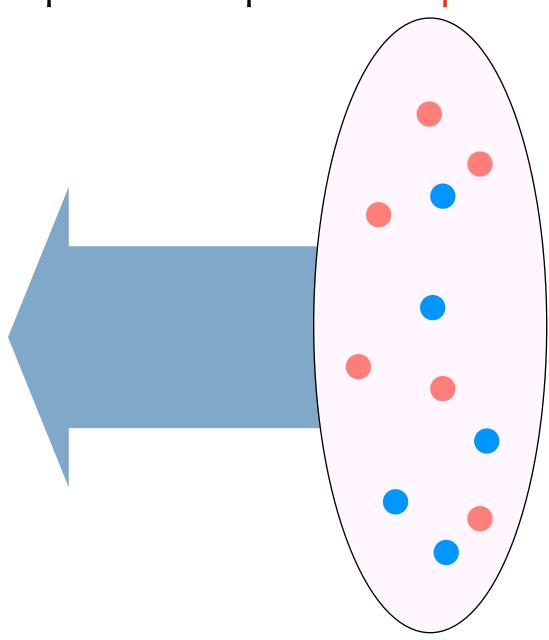
gauge invariant decomposition sum rule for L^q from twist-3 GPDs



 J^g

no further gauge-invariant decomposition

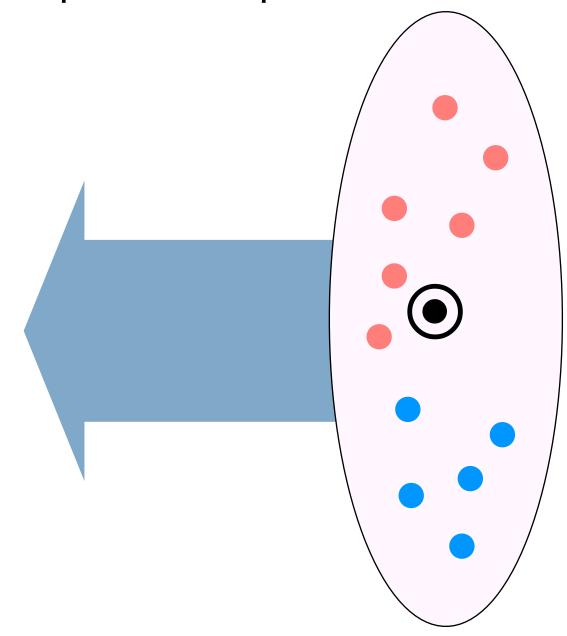
unpolarized quark in unpolarized nucleon



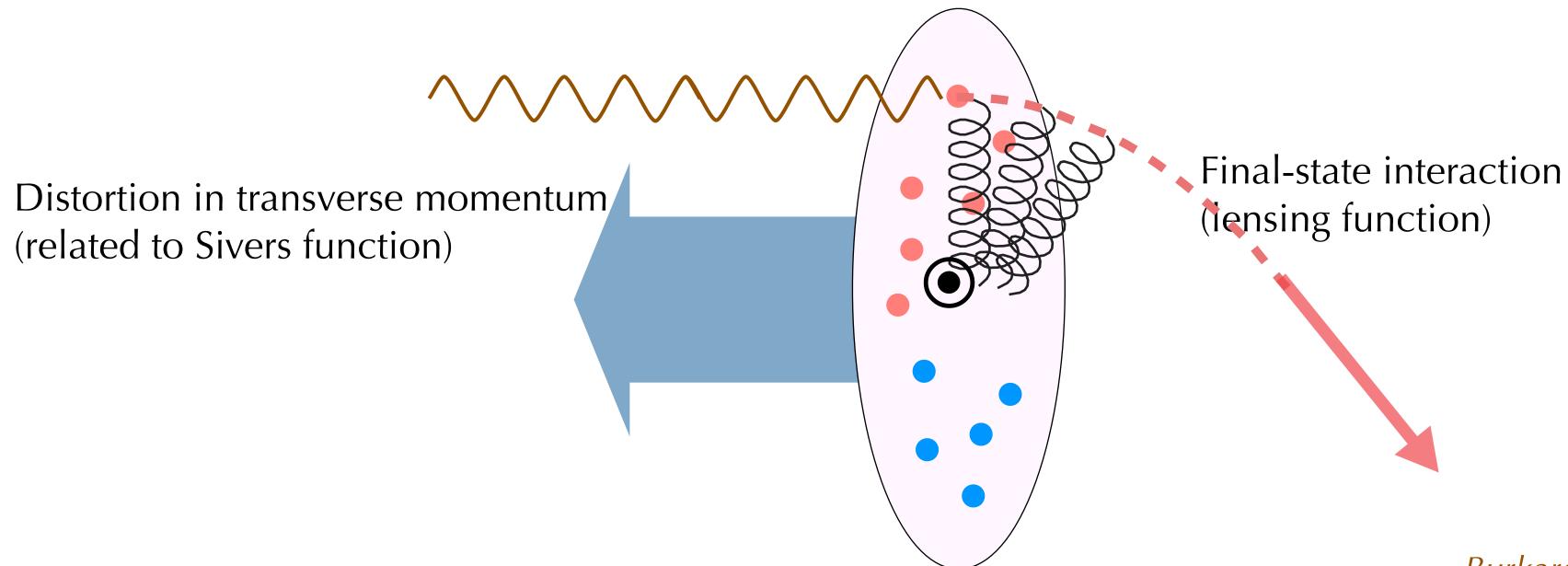
Burkardt, PRD 66 (2002) 114005

unpolarized quark in transversely pol. nucleon

Distortion in impact parameter (related to GPD E)

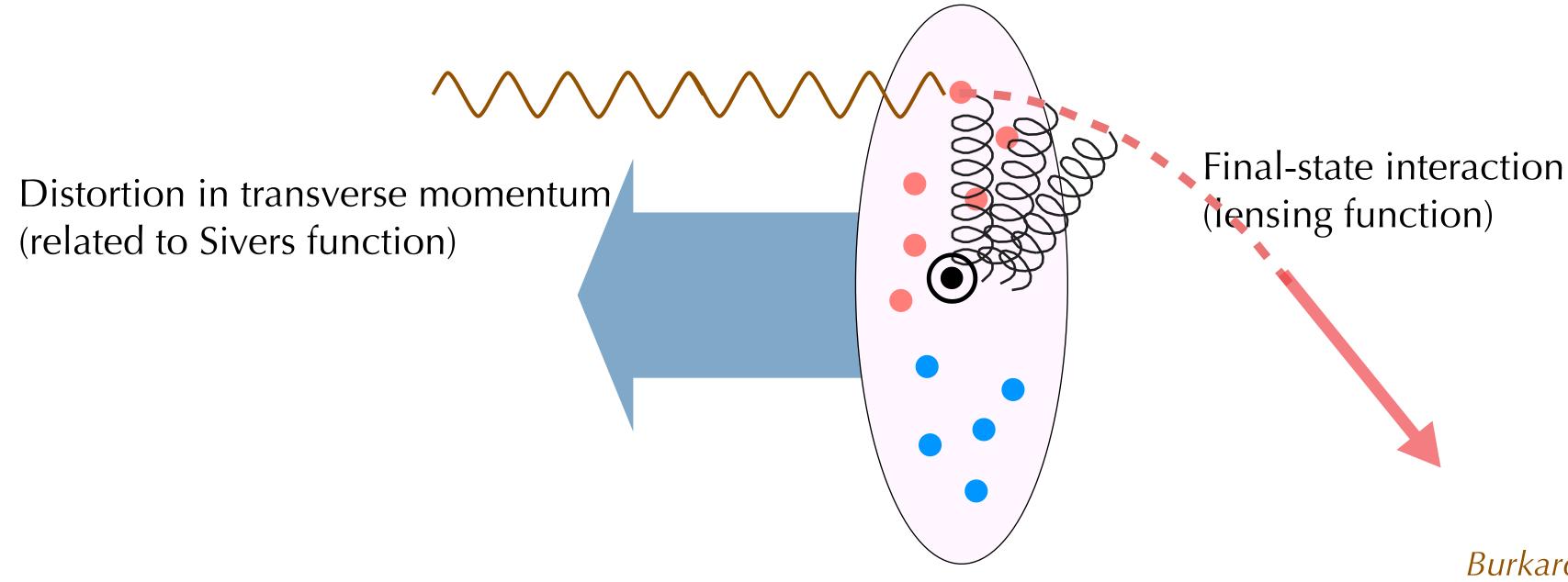


Burkardt, PRD 66 (2002) 114005



Burkardt, PRD 66 (2002) 114005

Model relation TMD ← GPD



Burkardt, PRD 66 (2002) 114005

$$-\int d^2\vec{k}_T \, k_T^i \, \frac{\epsilon_T^{jk} k_T^j S_T^k}{M} \, f_{1T}^{\perp q}(x, \vec{k}_T^2) \, \simeq \int d^2\vec{b}_T \, \mathcal{I}^{q,i}(x, \vec{b}_T) \, \frac{\epsilon_T^{jk} b_T^j S_T^k}{M} \left(\mathcal{E}^q(x, \vec{b}_T^2) \right)'$$
Sivers function Lensing function F.T. of E(x,0,t)

Successful phenomenological applications:

Bacchetta, Radici, PRL 107 (2011) 212001

Gamberg, Schlegel, PLB 685 (2010) 95

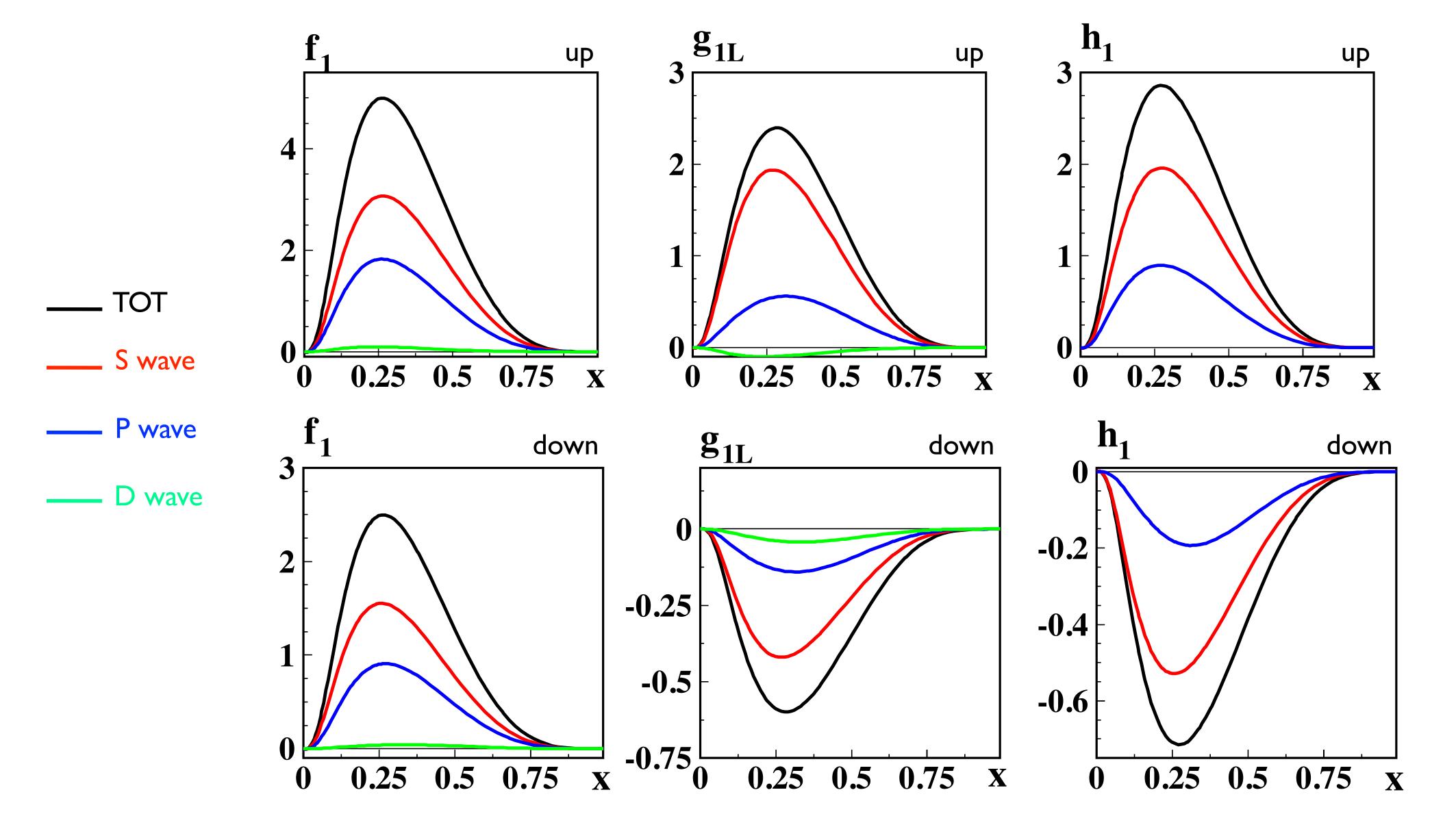
Conclusions

•TMDs and GPDs extend the concept of standard PDFs and provide a 3D description of the partonic structure of the nucleon

•TMDs and GPDs provide complementary information and allow us to investigate aspects of nucleon structure that are not accessible to standard collinear PDFs

- •A lot of data is already available, but we expect more from e+e-, SIDIS at higher energies, Drell-Yan, DVCS,
- •Some parametrizations of TMDs and GPDs are available, but we are a long way from anything similar to PDF global fits

OAM content of TMDs



OAM content of TMDs

