Phase diagram of IBM-2 and catastrophe theory

$$
\begin{gathered}
\text { J.E. García-Ramos }{ }^{1} \text {,J.M. Arias², } \\
\text { and J. Dukelsky }
\end{gathered}
$$

${ }^{1}$ Departamento de Física Aplicada, Universidad de Huelva, Spain.
${ }^{2}$ Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Spain.
${ }^{3}$ Instituto de Estructura de la Materia, CSIC, Madrid, Spain.

The model (I)

- Hamiltonian

$$
\begin{aligned}
& H=x\left(n_{d_{\pi}}+n_{d_{v}}\right)-\frac{1-x}{N} Q^{\left(\chi_{\pi}, \chi_{v}\right)} \cdot Q^{\left(\chi_{\pi}, \chi_{v}\right)}, \\
& n_{d}=\sum_{\mu} d_{\mu}^{\dagger} d_{\mu}, Q^{\left(\chi_{\pi}, \chi_{v}\right)}=\left(Q_{\pi}^{\chi_{\pi}}+Q_{v}^{\chi_{v}}\right) \\
& Q_{\mathrm{K}}^{\chi}=\left[d_{\mathrm{k}}^{\dagger} \widetilde{s}_{\mathrm{K}}+s_{\mathrm{k}}^{\dagger} \widetilde{d}_{\mathrm{k}}\right]^{2}+\chi_{\mathrm{K}}\left[d_{\mathrm{k}}^{\dagger} \widetilde{d}_{\mathrm{k}}\right]^{2}
\end{aligned}
$$

- Wave function

$$
\begin{aligned}
& \left|N_{\pi}, N_{v}, \beta_{\pi}, \gamma_{\pi}, \beta_{v}, \gamma_{v}, \Omega\right\rangle=\frac{\left(\Gamma_{\pi}^{\dagger}\right)^{N_{\pi}} \hat{R}_{3}(\Omega)\left(\Gamma_{\mathrm{v}}^{\dagger}\right)^{N_{v}}}{\sqrt{N_{\pi}!N_{\mathrm{v}}!}}|0\rangle, \\
& \Gamma_{\mathrm{K}}^{\dagger}=\frac{1}{\sqrt{1+\beta_{\mathrm{K}}^{2}}}\left[s_{\mathrm{K}}^{\dagger}+\beta_{\mathrm{K}} \cos \gamma_{\mathrm{K}} d_{\mathrm{k} 0}^{\dagger}+\frac{1}{\sqrt{2}} \beta_{\mathrm{K}} \sin \gamma_{\mathrm{K}}\left(d_{\mathrm{K} 2}^{\dagger}+d_{\mathrm{K}-2}^{\dagger}\right)\right]
\end{aligned}
$$

The model (II)

- Energy per boson in the thermodynamical limit

$$
\begin{aligned}
& E\left(\beta_{\pi}, \gamma_{\pi}, \beta_{v}, \gamma_{v} ; \chi_{\pi}, \chi_{\nu}, x\right)=\frac{x}{2} \sum_{\kappa=\pi, v} \frac{\beta_{\kappa}^{2}}{1+\beta_{\mathrm{K}}^{2}} \\
& -\frac{1-x}{4} \sum_{\mu=0, \pm 2}\left[\sum_{\kappa=\pi, v} Q_{\mu}^{2}(\kappa)+2 Q_{\mu}(\pi) Q_{-\mu}(v)\right] \\
& Q_{0}(\kappa)=\frac{\left[2 \beta_{\kappa} \cos \gamma_{\kappa}-\frac{2}{7} \beta_{\mathrm{\kappa}}^{2} \chi_{\kappa} \cos \left(2 \gamma_{\kappa}\right)\right]}{1+\beta_{\kappa}^{2}}, \\
& Q_{2}(\kappa)=\frac{1}{1+\beta_{\kappa}^{2}}\left[\sqrt{2} \beta_{\kappa} \sin \gamma_{\kappa}+\frac{1}{7} \beta_{\kappa}^{2} \chi_{\kappa} \sin \left(2 \gamma_{\kappa}\right)\right] .
\end{aligned}
$$

The model (III)

- Order parameters
$\beta_{\pi}, \quad \beta_{v}, \quad \gamma_{\pi}, \quad \gamma_{v}$

$$
x=0 \underset{\operatorname{SU}^{*}(3)}{\chi_{\mathrm{\pi}}} \overline{\bar{\pi}}-\chi_{v}=-\sqrt{7} / 2
$$

- Control parameters

$$
\begin{aligned}
& \text { trol parameters } \\
& \begin{array}{l}
\rho=1-x ; \theta=-\frac{\pi}{3} \frac{\chi_{\pi}-\chi_{v}}{\sqrt{7}} ; \\
\phi=-\frac{\pi}{3} \frac{\chi_{\pi}+\chi_{v}}{\sqrt{7}} \\
\chi^{\prime}=-\frac{\chi_{\pi}-\chi_{v}}{2} ; \chi=-\frac{\chi_{\pi}+\chi_{v}}{2} .
\end{array} \underbrace{\operatorname{su}(3)}_{\substack{\mathrm{u}(5) \\
\mathrm{x}=1}} \begin{array}{l}
\chi_{\pi}=\chi_{v}=-\sqrt{7} / 2
\end{array}
\end{aligned}
$$

How to get the phase diagram

- Using a Hartree-Bose procedure

$$
\begin{aligned}
& \sum_{\ell_{2} m_{2}} h_{\ell_{1} m_{1}, \ell_{2} m_{2}}^{\kappa} \eta_{\ell_{2} m_{2}}^{\mathrm{K}}=E_{\mathrm{K}} \eta_{\ell_{1} m_{1}}^{\kappa}, \\
h_{\ell_{1} m_{1}, \ell_{2} m_{2}}^{\kappa}= & \frac{\varepsilon_{\ell_{1} \kappa}}{2} \delta_{\ell_{1} \ell_{2}} \delta_{m_{1} m_{2}} \sum_{m_{1}} \eta_{\ell_{1} m_{1}}^{* \kappa} \eta_{\ell_{1} m_{1}}^{\mathrm{K}} \\
+ & 2 \sum_{\ell_{3} m_{3} \ell_{4} m_{4} \kappa_{2} \kappa_{3} \kappa_{4}} V_{\ell_{1} m_{1} \kappa_{,}, \ell_{3} m_{3} \kappa_{3}, \ell_{4} m_{4} \kappa_{4}, \ell_{2} m_{2} \kappa_{2}} \frac{\eta_{\ell_{3} m_{3}}^{* \kappa_{3}} \eta_{\ell_{4} m_{4}}^{\kappa_{4}} \eta_{\ell_{2} m_{2}}^{\kappa_{2}}}{4 \eta_{\ell_{2} m_{2}}^{K}} .
\end{aligned}
$$

- Minimizing with Mathematica

$$
\text { FindMinimum }\left[E\left(\beta_{\pi}, \gamma_{\pi}, \beta_{v}, \gamma_{v} ; \chi_{\pi}, \chi_{v}, x\right)\right]
$$

The phase diagram

- Three phases: spherical, axially deformed and triaxially deformed.

How to determine the order of a phase transition

- First order phase transition

$$
\text { Discontinuity in } \frac{\partial E}{\partial \xi}
$$

- Second order phase transition

$$
\text { Discontinuity in } \frac{\partial^{2} E}{\partial \xi^{2}}
$$

- It seems very easy to determine the order of a phase transition!

Transition $S U$ (3) to $S U(3)^{*}$

- Second order phase transition

Transition $U(5)$ to $S U(3)^{*}$

- Second order phase transition

Transition $U(5)$ to triaxial shape

- Second and first order phase transition

Transition $U(5)$ to $S U(3)^{*}$ in detail

- Second order phase transition

Catastrophe theory

- First reference: René Thom, Stabilité Structurelle et Morphogénèse (1972).
- Catastrophe theory (CT) is framed in the theory of singularities for differentiable mappings and in the theory of bifurcations, therefore it deals with singularities of smooth real-valued functions and tries to classify such singularities.
- CT attempts to study how the qualitative nature of the solutions of equations depends on the parameters that appear in the equations (Gilmore 1981).
- CT explains how the state of a system can change suddenly under a smooth change in the control variables.

CT program

- Let us assume a system described by a real family of potentials:

$$
V(\mathbf{x}, \boldsymbol{\lambda}) \in \Re
$$

where $\mathbf{x} \in \mathfrak{R}^{n}$ are the state (order) variables and $\lambda \in \mathfrak{R}^{r}$ are the control parameters.

- In this family one can find three types of points:
- Regular points: $\nabla V \neq 0$.
- Morse points (isolated critical points): $\nabla V=0$ and $\left|\mathscr{H}_{i j}\right| \neq 0$.
- Non-Morse points (degenerated critical points): $\nabla V=0$ and $\left|\mathscr{H}_{i j}\right|=0$.

CT program (Margalef-Roig, et al)

- Definition of $h(\mathbf{x}, \lambda)=V\left(\mathbf{x}+\mathbf{x}^{\mathbf{0}}, \lambda+\lambda^{\mathbf{0}}\right)-V\left(\mathbf{x}^{\mathbf{0}}, \lambda^{\mathbf{0}}\right)$, where ($\left.\mathbf{x}^{\mathbf{0}}, \lambda^{\mathbf{0}}\right)$ correspond to a degenerated critical point.
- Definition of the germ: $g(\mathbf{x})=h(\mathbf{x}, \mathbf{0})$.
- Calculation of the determinacy and the codimension of $g(\mathbf{x})$ through the k-jet of $g(\mathbf{x})$ (truncated Taylor expansion with k term).
- Study the k-transversality of $g(\mathbf{x})$ in order to establish the isomorphism between $h(\mathbf{x}, \lambda)$ and a canonical unfolding of $g(\mathbf{x})$.
- Note that it is only possible to prove the existence of an isomorphism but this DOES NOT provides the necessary change of coordinates.

What people do with CT

- Taylor expansion around a degenerated critical point. If possible, around the most degenerated critical point.
- Arrangement of the control parameters in order to annihilate the lower order terms in the Taylor expansion.
- The term that survives after the arrangement is the germ.
- The number of canceled terms corresponds to the number of essential parameters (equivalent to the codimension ...).

What people do with CT

- Substitution of $V(\mathbf{x}, \boldsymbol{\lambda})$ by a truncated Taylor expansion $V(\mathbf{x}, \lambda)_{\text {pol }}$, being the germ the higher order term (the order of the Taylor expansion is the determinacy...).
- Establish the mapping between $V(\mathbf{x}, \lambda)_{p o l}$ and a canonical form through a nonlinear change of variables (it should be calculated the transversality...).
- Work out $V(\mathbf{x}, \lambda)_{\text {pol }}$ for getting the bifurcation and the Maxwell set.

Relevant theorems

- Implicit function theorem for regular points.

$$
V(\mathbf{x}) \rightarrow \mathbf{x}
$$

- Morse lemma for isolated critical points.

$$
V(\mathbf{x}) \rightarrow \mathbf{x}^{\mathbf{2}}
$$

- Thom theorem for degenerated critical points.

$$
V(\mathbf{x}) \rightarrow g(\mathbf{x})+\text { unfolding }
$$

- Splitting lemma for potential with several variables.

$$
V(\mathbf{x}) \rightarrow g(\mathbf{x})+\text { unfolding }+\mathbf{y}^{2}-\mathbf{z}^{2}
$$

Misunderstandings on Catastrophe theory

- In many cases, CT cannot provide quantitative results and indeed needs the help of numerical results to start with the CT program.
About this Thom said: "...as soon as it became clear that the theory did not permit quantitative prediction, all good minds ... decided it was of no value..."
- CT does not consist in getting the bifurcation and the Maxwell sets.
- The interest of CT focus on the clasification of germs of a family of potentials and on giving universal unfoldings, i.e. general perturbations.

Region $U(5)-O(6)-S U^{*}(3)$ (I)

- Restrictions:

$$
\begin{aligned}
& \chi_{\pi}=-\chi_{v}=\chi \\
& \beta_{\pi}=\beta_{v}=\beta \\
& \gamma_{\pi}=\pi / 3-\gamma_{v}=\gamma
\end{aligned}
$$

- Energy surface:

$$
\begin{aligned}
& E(\beta, \gamma, \chi, x)=\frac{-1}{14\left(1+\beta^{2}\right)^{2}}\left(\beta ^ { 2 } \left(42 x-28-14 \beta^{2}+14(1-x) \beta^{2}+2(1-x) \beta^{2} \chi^{2}\right.\right. \\
- & 2 \sqrt{14}(1-x) \beta \chi \cos (\gamma)+14(1-x) \cos (2 \gamma)-4 \sqrt{14}(1-x) \beta \chi \cos (3 \gamma) \\
+ & (1-x) \beta^{2} \chi^{2} \cos (4 \gamma)+2 \sqrt{42}(1-x) \beta \chi \sin (\gamma)+14 \sqrt{3}(1-x) \sin (2 \gamma) \\
- & \left.\sqrt{3}(1-x) \beta^{2} \chi^{2} \sin (4 \gamma)\right)
\end{aligned}
$$

Region $U(5)-O(6)-S U^{*}$ (3) (II)

- Taylor expansion around $\beta=0$ and $\gamma=\pi / 3(\gamma-\pi / 6 \rightarrow \gamma)$:

$$
\begin{aligned}
& E \sim\left((5 x-4)+4(1-x) \gamma^{2}-\frac{4(1-x) \gamma^{4}}{3}+\Theta(\gamma)^{5}\right) \beta^{2} \\
+ & \left(-8 \sqrt{\frac{2}{7}}(1-x) \chi \gamma+\frac{4 \sqrt{14}(1-x) \chi \gamma^{3}}{3}+\Theta(\gamma)^{5}\right) \beta^{3} \\
+ & \left((8-9 x)-\frac{8(1-x)\left(7+\chi^{2}\right) \gamma^{2}}{7}+\frac{8(1-x)\left(7+4 \chi^{2}\right) \gamma^{4}}{21}+\Theta(\gamma)^{5}\right) \beta^{4}+\Theta(\beta)^{5}
\end{aligned}
$$

- Reduction to a polynomial

$$
E_{\text {pol }}=(8-9 x) \beta^{4}+\beta^{2}\left(5 x-4+4(1-x) \gamma^{2}\right)-8 \sqrt{\frac{2}{7}}(1-x) \beta^{3} \gamma \chi
$$

- Codimension, determinacy and transversality should be calculated!

Region $U(5)-O(6)-S U^{*}(3)$ (III)

- Critical points of $E_{p o l}$:

$$
\begin{aligned}
& \gamma=-\frac{\sqrt{5 x-4} \chi}{\sqrt{63 x-56+8(1-x) \chi^{2}}}, \beta=-\frac{\sqrt{\frac{7}{2}} \sqrt{5 x-4}}{\sqrt{63 x-56+8(1-x) \chi^{2}}}, \\
& \gamma=\frac{\sqrt{5 x-4} \chi}{\sqrt{63 x-56+8(1-x) \chi^{2}}}, \beta=\frac{\sqrt{\frac{7}{2}} \sqrt{5 x-4}}{\sqrt{63 x-56+8(1-x) \chi^{2}}}, \\
& \beta=0, \\
& \beta=0 .
\end{aligned}
$$

- No coexistence region \rightarrow second order phase transition.

Region $X(5)-E(5)-X^{*}(5)(\mathrm{I})$

- Restrictions: $\gamma_{\pi}=\gamma_{v}=0$
- Energy surface:

$$
\begin{aligned}
& E\left(\beta_{\pi}, \beta_{v}, \chi_{\pi}, \chi_{v}, x\right)=\frac{x}{2}\left(\frac{\beta_{v}{ }^{2}}{1+\beta_{v}{ }^{2}}+\frac{\beta_{\pi}^{2}}{1+\beta_{\pi}^{2}}\right) \\
- & \frac{1-x}{196\left(1+\beta_{v}{ }^{2}\right)^{2}\left(1+\beta_{\pi}^{2}\right)^{2}}\left(-14 \beta_{v}\left(1+\beta_{\pi}^{2}\right)+\beta_{\pi}\left(-14+\sqrt{14} \beta_{\pi} \chi_{\pi}\right)\right. \\
+ & \left.\beta_{v}{ }^{2}\left(-14 \beta_{\pi}+\sqrt{14} \chi_{v}+\sqrt{14} \beta_{\pi}^{2}\left(\chi_{v}+\chi_{\pi}\right)\right)^{2}\right)
\end{aligned}
$$

Region $X(5)-E(5)-X^{*}(5)($ II $)$

- Hessian matrix in $\beta_{\pi}=\beta_{v}=0$:

$$
\mathscr{H}=\left(\begin{array}{ll}
3 x-2 & 2 x-2 \\
2 x-2 & 3 x-2
\end{array}\right)
$$

- Eigenvalues and eigenvectors:

$$
\begin{array}{cc}
\lambda_{1}=5 x-4, & \beta_{1}=\frac{1}{2}\left(\beta_{\pi}+\beta_{v}\right) \\
\lambda_{2}=x, & \beta_{2}=\frac{1}{2}\left(-\beta_{\pi}+\beta_{v}\right)
\end{array}
$$

- β_{1} is the essential and β_{2} is the unessential variable.

Region $X(5)-E(5)-X^{*}(5)(\mathrm{III})$

- Reduction of the energy to a polynomial:

$$
\begin{aligned}
& E_{p o l}=x \beta_{2}^{2}+(5 x-4) \beta_{1}{ }^{2} \\
+ & 4 \sqrt{\frac{2}{7}}(1-x) \chi \beta_{1}^{3}+\left(9 x-8-\frac{2(1-x) \chi^{2}}{7}\right) \beta_{1}^{4},
\end{aligned}
$$

- Because of the cubic terms there exists a region where two minima coexist \rightarrow first order phase transition.
- Codimension, determinacy and transversality should be calculated!

Summary and conclusions

- We have presented a phase diagram for IBM-2 where a spherical, an axially deformed and a triaxial shape region can distinguish.
- We have established numerically the order of the phase transitions in the IBM-2 phase diagram.
- The ambiguity of the purely numerical results indicates that CT is a valuable tool for this problem.
- We have presented the main features of CT.
- We have established analytically (using CT) the order of the phase transitions in the IBM-2 phase diagram.

