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The model (I)

• Hamiltonian

H = x(ndπ +ndν)−
1−x

N
Q(χπ,χν) ·Q(χπ,χν),

nd = ∑
µ

d†
µdµ, Q(χπ,χν) =

(
Qχπ

π +Qχν
ν

)

Qχ
κ =

[
d†

κs̃κ +s†
κd̃κ

]2
+χκ

[
d†

κd̃κ

]2

• Wave function

|Nπ,Nν,βπ,γπ,βν,γν,Ω〉 =
(Γ†

π)
NπR̂3(Ω)(Γ†

ν)
Nν

√
Nπ!Nν!

|0〉,

Γ†
κ =

1√
1+β2

κ

[
s†

κ +βκ cosγκd†
κ0 +

1√
2

βκ sinγκ(d
†
κ2 +d†

κ−2)

]
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The model (II)

• Energy per boson in the thermodynamical limit

E(βπ,γπ,βν,γν;χπ,χν,x) =
x
2 ∑

κ=π,ν

β2
κ

1+β2
κ

− 1−x
4 ∑

µ=0,±2

[

∑
κ=π,ν

Q2
µ(κ)+2Qµ(π)Q−µ(ν)

]

Q0(κ) =

[
2βκ cosγκ − 2

7β2
κχκ cos(2γκ)

]

1+β2
κ

,

Q2(κ) =
1

1+β2
κ

[√
2βκ sinγκ +

1
7

β2
κχκ sin(2γκ)

]
.
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The model (III)

• Order parameters

βπ, βν, γπ, γν

• Control parameters

ρ = 1−x ; θ = −π
3

χπ −χν√
7

;

φ = −π
3

χπ +χν√
7

χ′ = −χπ −χν
2

; χ = −χπ +χν
2

.

ρ

φ
θU(5) O(6)

SU(3)

SU(3)*
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x=0

x=0 χ  = −χ  =− 7/2π ν
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χ  = χ  =0π ν
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How to get the phase diagram

• Using a Hartree-Bose procedure

∑
`2m2

hκ
`1m1,`2m2

ηκ
`2m2

= Eκηκ
`1m1

,

hκ
`1m1,`2m2

=
ε`1κ

2
δ`1`2δm1m2 ∑

m1

η∗κ
`1m1

ηκ
`1m1

+ 2 ∑
`3m3`4m4κ2κ3κ4

V̀ 1m1κ,`3m3κ3,`4m4κ4,`2m2κ2

η∗κ3
`3m3

ηκ4
`4m4

ηκ2
`2m2

4ηκ
`2m2

.

• Minimizing with Mathematica

FindMinimum[E(βπ,γπ,βν,γν;χπ,χν,x)]
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The phase diagram

• Three phases: spherical, axially deformed and triaxially
deformed.
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How to determine the order of a phase transition

• First order phase transition

Discontinuity in
∂E
∂ξ

• Second order phase transition

Discontinuity in
∂2E
∂ξ2

• It seems very easy to determine the order of a phase
transition!
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TransitionSU(3) to SU(3)∗

• Second order phase transition
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TransitionU(5) to SU(3)∗

• Second order phase transition
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TransitionU(5) to triaxial shape

• Second and first order phase transition
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TransitionU(5) to SU(3)∗ in detail

• Second order phase transition
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Catastrophe theory

• First reference: René Thom, Stabilité Structurelle et
Morphogénèse (1972).

• Catastrophe theory (CT) is framed in the theory of
singularities for differentiable mappings and in the theory of
bifurcations, therefore it deals with singularities of smooth
real-valued functions and tries to classify such singularities.

• CT attempts to study how the qualitative nature of the
solutions of equations depends on the parameters that
appear in the equations (Gilmore 1981).

• CT explains how the state of a system can change
suddenly under a smooth change in the control variables.
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CT program

• Let us assume a system described by a real family of
potentials:

V(x,λ) ∈ ℜ

where x ∈ ℜn are the state (order) variables and λ ∈ ℜr are
the control parameters.

• In this family one can find three types of points:
◦ Regular points: ∇V 6= 0.
◦ Morse points (isolated critical points):

∇V = 0 and |H i j | 6= 0.
◦ Non-Morse points (degenerated critical points):

∇V = 0 and |H i j | = 0.
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CT program (Margalef-Roig, et al)

• Definition of h(x,λ) = V(x+x0,λ+λ0)−V(x0,λ0), where
(x0,λ0) correspond to a degenerated critical point.

• Definition of the germ: g(x) = h(x,0).

• Calculation of the determinacy and the codimension of g(x)
through the k-jet of g(x) (truncated Taylor expansion with k
term).

• Study the k-transversality of g(x) in order to establish the
isomorphism between h(x,λ) and a canonical unfolding of
g(x).

• Note that it is only possible to prove the existence of an
isomorphism but this DOES NOT provides the necessary
change of coordinates.
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What people do with CT

• Taylor expansion around a degenerated critical point. If
possible, around the most degenerated critical point.

• Arrangement of the control parameters in order to
annihilate the lower order terms in the Taylor expansion.

• The term that survives after the arrangement is the germ.
• The number of canceled terms corresponds to the number

of essential parameters (equivalent to the codimension ...).
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What people do with CT

• Substitution of V(x,λ) by a truncated Taylor expansion
V(x,λ)pol, being the germ the higher order term (the order
of the Taylor expansion is the determinacy...).

• Establish the mapping between V(x,λ)pol and a canonical
form through a nonlinear change of variables (it should be
calculated the transversality...).

• Work out V(x,λ)pol for getting the bifurcation and the
Maxwell set.
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Relevant theorems

• Implicit function theorem for regular points.

V(x) → x

• Morse lemma for isolated critical points.

V(x) → x2

• Thom theorem for degenerated critical points.

V(x) → g(x)+unfolding

• Splitting lemma for potential with several variables.

V(x) → g(x)+unfolding+y2 − z2
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Misunderstandings on Catastrophe theory

• In many cases, CT cannot provide quantitative results and
indeed needs the help of numerical results to start with the
CT program.
About this Thom said: “...as soon as it became clear that the
theory did not permit quantitative prediction, all good minds ...
decided it was of no value...”

• CT does not consist in getting the bifurcation and the
Maxwell sets.

• The interest of CT focus on the clasification of germs of a
family of potentials and on giving universal unfoldings, i.e.
general perturbations.
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RegionU(5)−O(6)−SU∗(3) (I)

• Restrictions:

χπ = −χν = χ
βπ = βν = β
γπ = π/3− γν = γ

• Energy surface:

E(β,γ,χ,x) =
−1

14(1+β2)
2

(
β2 (

42x−28−14β2 +14(1−x)β2 +2(1−x)β2 χ2

− 2
√

14(1−x)βχ cos(γ)+14(1−x) cos(2γ)−4
√

14(1−x)βχ cos(3γ)

+ (1−x)β2 χ2 cos(4γ)+2
√

42(1−x)βχ sin(γ)+14
√

3(1−x) sin(2γ)

−
√

3(1−x)β2 χ2 sin(4γ)
)
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RegionU(5)−O(6)−SU∗(3) (II)

• Taylor expansion around β = 0 and γ = π/3(γ−π/6→ γ):

E ∼
(

(5x−4)+4(1−x)γ2− 4(1−x)γ4

3
+Θ(γ)5

)
β2

+

(
−8

√
2
7

(1−x)χγ+
4
√

14(1−x)χγ3

3
+Θ(γ)5

)
β3

+

(
(8−9x)− 8(1−x)

(
7+χ2

)
γ2

7
+

8(1−x)
(
7+4χ2

)
γ4

21
+Θ(γ)5

)
β4 +Θ(β)5

• Reduction to a polynomial

Epol = (8−9x) β4 +β2
(
5x−4+4(1−x)γ2

)
−8

√
2
7

(1−x)β3 γχ

• Codimension, determinacy and transversality should be
calculated!
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RegionU(5)−O(6)−SU∗(3) (III)

• Critical points of Epol:

γ = −
√

5x−4χ√
63x−56+8(1−x)χ2

, β = −

√
7
2

√
5x−4

√
63x−56+8(1−x)χ2

,

γ =

√
5x−4χ√

63x−56+8(1−x)χ2
, β =

√
7
2

√
5x−4

√
63x−56+8(1−x)χ2

,

β = 0,

β = 0.

• No coexistence region → second order phase transition.
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RegionX(5)−E(5)−X∗(5) (I)

• Restrictions: γπ = γν = 0
• Energy surface:

E(βπ,βν,χπ,χν,x) =
x
2

(
βν

2

1+βν
2 +

βπ
2

1+βπ
2

)

− 1−x

196
(

1+βν
2
)2(

1+βπ
2
)2

(
−14βν

(
1+βπ

2
)

+βπ

(
−14+

√
14βπ χπ

)

+ βν
2
(
−14βπ +

√
14χν +

√
14βπ

2 (χν +χπ)
)2

)
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RegionX(5)−E(5)−X∗(5) (II)

• Hessian matrix in βπ = βν = 0:

H =

(
3x−2 2x−2

2x−2 3x−2

)

• Eigenvalues and eigenvectors:

λ1 = 5x−4, β1 = 1
2(βπ +βν)

λ2 = x, β2 = 1
2(−βπ +βν)

• β1 is the essential and β2 is the unessential variable.
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RegionX(5)−E(5)−X∗(5) (III)

• Reduction of the energy to a polynomial:

Epol = xβ2
2 +(5x−4) β1

2

+ 4

√
2
7

(1−x)χβ1
3 +

(
9x−8− 2(1−x)χ2

7

)
β1

4,

• Because of the cubic terms there exists a region where two
minima coexist → first order phase transition.

• Codimension, determinacy and transversality should be
calculated!
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Summary and conclusions

• We have presented a phase diagram for IBM-2 where a
spherical, an axially deformed and a triaxial shape region
can distinguish.

• We have established numerically the order of the phase
transitions in the IBM-2 phase diagram.

• The ambiguity of the purely numerical results indicates that
CT is a valuable tool for this problem.

• We have presented the main features of CT.
• We have established analytically (using CT) the order of

the phase transitions in the IBM-2 phase diagram.
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