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Abstract: A method for controlling an active power filter using neural networks is presented. 
Currently, there is an increase of voltage and current harmonics in power systems, caused by 
nonlinear loads. The active power filters (APFs) are used to compensate the generated harmonics 
and to correct the load power factor. The proposed control design is a pulse width modulation 
control (PWM) with two blocks that include neural networks. Adaptive networks estimate the 
reference compensation currents. On the other hand, a multilayer perceptron feedforward network 
(trained by a backpropagation algorithm) that works as a hysteresis band comparator is used. Two 
practical cases with Matlab-Simulink are presented to check the proposed control performance. 

1 Introduction 

Frequently, AC electrical power systems include several 
kinds of nonlinear loads (rectifiers, inverters, AC regulators, 
etc.). Thus load currents and voltages are nonsinusoidal, 
and it is necessary to compensate the voltage and current 
harmonics. In this case, it is possible to use active power 
filters (APFs). The use of shunt APFs is a method 
developed to suppress current harmonics and to correct 
power factor, especially in fast-fluctuating loads [ 1-41. The 
target is to obtain balanced and sinusoidal source currents 
by injection of compensation currents. 

The configurations of the APF power circuits developed 
include three-phase single-phase topologies. In symmetrical 
circuits a three-phase bridge inverter is suitable. However, in 
serious asymmetrical circuits, three single-phase bridge 
inverters have been used (i.e. each phase must be 
compensated individually). Here, the authors propose an 
APF with a three-phase IGBTs bridge converter with a split 
capacitor on the DC side, to compensate a three-phase 
unbalanced nonlinear load [4]. A control block allows 
trigger signals of switching devices used at the APF power 
circuit to be obtained. 

The APF control has two main blocks: the first one 
generates the control reference signals and the second one 
carries out the control method. For three-phase four-wire 
systems, Akagi and co-authors introduced the so-called 
‘pq-0’ theory based on the ‘u-fi4’ transformation [5]. 
Recently, control reference currents have been obtained 
without mathematical transformations [6]. On the other 
hand, the control strategies of current controllers can be 
classified as ramp and hysteresis band comparators. The 
ramp comparator method compares the error between the 
actual and the reference compensation currents with a 
triangular waveform to generate the inverter firing pulses. 
The advantage is that inverter switching is limited to the 
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frequency of the triangular waveform; however, there are 
phase and amplitude errors, steady-state included 171. In the 
hysteresis band controller method, the currents will stay in a 
band around the reference currents; this scheme provides 
excellent dynamic performance. In this paper, a shunt APF 
with hysteresis band control is used to compensate the 
nonlinear loads. 

Artificial neural networks (ANNs) have been system- 
atically applied to electrical engineering [S, 91. Nowadays, 
this technique is considered as a new tool for designing APF 
control circuits. The ANNs present two principal char- 
acteristics. It is not necessary to establish specific input- 
output relationships, but they are formulated through a 
learning process or through an adaptive algorithm. More- 
over, parallel computing architecture increases the system 
speed and reliability [1&14]. 

In this paper, a new design of an APF control method 
based on neural networks will be presented. Load voltages 
and currents are sensed, the control block calculates the 
power circuit control signals from the reference compensa- 
tion currents, and the power circuit injects the compensation 
current into the power system. 

A new method for controlling an active power filter with 
artificial neural networks (ANNs) is presented and the 
ANNs blocks will be described. It will be shown how the 
electrical system and its compensation can be simulated in a 
Matlab-Simulink application. The results of two practical 
cases will be presented: compensation by shunt APF of a 
three-phase unbalanced AC regulator and compensation of 
a controlled three-phase converter. 

2 

A system with a nonlinear three-phase load supplied by a 
voltage source is considered. A shunt active power filter is 
used to generate the compensation current. The nonlinear 
load current iL is the sum of the source current is and the 
compensation current ic. The target is to get a source 
current without harmonic and reactive components. The 
suitable compensation current injected by the shunt APF 
corresponds to the load current nonactive component. The 
APF power circuit proposed is a three-phase lGBTs bridge 
inverter with a split capacitor in the DC side, to compensate 
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for three-phase, four-wires, unbalanced nonlinear loads [4] 
(Fig. 1). 

source i- nonlinear load 
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Fig. 1 Three-phase four-wire system with sliiint uctive power filter 

In this paper, a shunt APF with a hysteresis band control 
is used to compensate for the nonlinear loads. The target is 
to control the compensation currents by forcing them to 
follow the reference ones. The switching strategies of the 
three-phase inverter will keep the currents in the hysteresis 
band. 

A control block generates the IGBTs trigger signals. A 
basic scheme for the proposed hysteresis band control is 
shown in Fig. 2. The real load currents are sensed and they 
are compared with their nonactive components, the 
reference compensation currents. 
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Fig. 2 Hysteresis band control diugmn 

The hysteresis comparator outputs signals are used to 
turn on the inverter power switches. The compensation 
current will stay in a band around the reference signal. 

A new design of an APF control method based on neural 
networks is presented. Load voltages and currents are 
sensed, the control block calculates the power circuit IGBT 
trigger signals from the reference compensation currents, 
and the power circuit of APF injects the compensation 
current into the power system. 

The control has two blocks. The first one is developed 
with adaptive networks (Adaline neurons), which allow on- 
line estimation to be made of control reference compensa- 
tion currents. The second one is a feedfonvard network. 
After a training process, it works on-line as a comparator 
between the reference waveforms and the actual compensa- 
tion currents (Fig. 3). 

The first block inputs are load voltages (vL,N,tLur/) and 
load currents (iL,r,ctua/). This block estimates the compensa- 
tion currents that are going to be used as reference in the 
control system (i,-,cf). The second block inputs are the 
differences between the actual and the reference compensa- 
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Fig. 3 Block rlicigrrini of'acfive pott:cr,filter control 

tion currents, the signals Error in Fig. 3.  The actual 
compensation currents are the result of controlling the 
switching logic of power circuit transistors. 

The proposed control allows an excellent filter dynamic 
response, and the compensation currents can be adapted 
quickly to any change of load current. The results of two 
practical cases will be presented in Section 5. 

3 Compensation reference current 

3. I Adaptive neural network principles 
A periodic waveform can be expanded by Fourier analysis 
as the sum of the cosine and sine frequency components. 
The following model of the signal to be estimated is 
proposed: 

f ( t )  = [x,, cos(not) + K~ sin(not)] ( I )  

where X N  and Y, are the amplitude of the cosine and sine 
components of order-n harmonic. In vectorial notation: 

n = I ,  ,N 

where: 

W T  = [XIYI  . . .  X N Y ~ ]  and x ( t )  = 

cos ot 
sin cot 

cos N o t  
sin N o t  

... (3) 

The signals are sampled at a uniform rate At ,  so time values 
are discrete, kAt with k=0,  1, 2 .... The dot product 
presented in (2) is carried out by one Adaline neuron, where 
W T  is the network weights vector. After the initial 
estimation, an adaptive algorithm updates the weights. 
Thus, the estimated signal converges to the actual one. 
Fig. 4 shows the network topology and the weights update 
algorithm. At time k, x(k) is the proposed signal model and 

J;IctLf&) is the actual signal. The neurons, taking into 

f (kdt) 

(sin wkdt 

Fig. 4 Adnl,tive network topology 
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account their weights W(k), carry out an estimation J&). 
The error e(k) is the difference between the actual signal and 
its estimation. An algorithm allows the weights to be used in 
the next iteration W ( k +  1) to be obtained, which minimises 
that error. After this iterative process, the estimated signals 
adapt to the actual signals. 

The weight adaptation algorithm is a modification of the 
Widrow-Hoff w-H) algorithm [13, 141, which minimises 
the average square error between the actual and the 
estimated signals. It can be written as follows: 

(4) 

Equation (4) is the W-H rule. The scalar product xT(k) x(k) 
is the nonn of the vector x(k) .  So, in each iteration, weights 
are adjusted proportionally to the error and they follow the 
x(k)  unitary direction. A modification of the W-H rule can 
be written as follows: 

In (5 ) ,  y(k)  is the x(k)  sign, y(k)=sgn(x(k)). As x(k) are 
sinusoidal signals, if the signals sign is considered, the 
learning rate for the weight correction will increase. The 
convergence-settling time decreases, though the convergence 
is less stable. The authors have considered an average 
between the signal and the signal sign, which reduces the 
convergence problems introduced. 

y ( k )  = 0.5 . s g n ( x ( k ) )  + 0.5 x ( k )  ( 6 )  
Moreover, a learning parameter a is introduced to get a 
more stable convergence. The a parameter is modified as 
shown in the following equation: 

cx = a0 + cle + c 2 e  

Thus, the a parameter, which depends on the linear 
error and its derivative, improves the algorithm 
convergence. 

Both corrections influence the convergence in opposite 
ways; this commitment must be achieved in order to get 
stable and fast enough convergence. The initial evolution of 
estimated signals depends on the initial choice of weight. 
Evolution from another change does not depend on that 
initial choice. 

(7) 

3.2 Estimation of voltage and current 
waveforms 
As nonlinear loads are present in a power system, load 
current waveforms are nonsinusoidal. A periodic waveform 
can be expanded by Fourier analysis as the sum of the 
cosine and sine frequency components. So, load voltages 
and currents can be expressed as shown in (8) and (9): 

uL = [ K j 1  cos(jot) + K j 2  sin(jot)] ( 8 )  
n=l .... :N  

iL = [zn1 c o s ~ w t )  +1,!2 sinbut)] (9) 

where o is the fundamental frequency, VIl y Vn2 are the 
cosine and sin frequency components of load voltage and 
IFll and J j 2  are the cosine and sin frequency components of 
load current. 

Two Adaline neurons estimate the fundamental compo- 
nents of load voltage and current per phase. Each active 
current is estimated from those fundamental components, 
with fundamental frequency coefficients of uL and iL 
estimated per phase, the load active current can be 
calculated without computing any integration. The target 

n=I ;....lV 
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The result of (10) is: 

C (6,lI~i,I~ + K . l 2 z i ; 1 2 )  

The difference between actual load currents and their 
estimated fundamental active components is estimated as 
nonactive currents. They are used as reference compensa- 
tion currents of the APF control circuit. 

(12) 
. .  

l ~ , r e /  r = l r  - 1oct.r 

The source currents of compensated system become 
balanced and sinusoidals. 

4 Control of compensation currents 

4. I Feedforward neural network principles 
The artificial neural networks (ANNs) consist of a large 
number of strongly connected elements. The artificial 
neurons represent a biological neuron abstraction carried 
out in a computer program. The artificial neuron model is 
shown in Fig. 5. 

input data 

neuron 
output 

transfer 
function 

i(n) 

Fig. 5 Artijificiul neuron niodel 

The input data i(l), i(2), z(3), ..., i(n) flow through the 
synapse weights and they are accumulated in the node 
represented as a circle. The weights amplify or attenuate the 
input signals before their addition. Once added, the data 
flow to the output through a transfer function f, which may 
be the threshold one, the sign one, the linear threshold one 
or the pure linear one. Alternatively, it may be a continuous 
nonlinear function such as the sigmoid one, the inverse tan 
one, the hyperbolic one or the gaussian one. 

The neurons are connected conforming in different 
layers. A multilayer perceptron network has feedforward 
artitecture, as shown in Fig. 6. 

The neural architecture consists of three layers: the input 
one, the hidden one and the output one. The circles 
represent neurons. There is a neuron in such an output. 
Thus, the feedforward archtecture computes the input data 
in a parallel way, faster than the computer sequential 
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Fig. 6 FeerlJ0nvur.d neuml network urchitectirve 

algorithms. This network can be trained to supply an 
output target when the corresponding inputs are applied. 
The most commonly used method is the backpropagation 
training algorithm. The initial weights are random. The 
initial output pattern is compared with the current output, 
and the weights are adjusted by the algorithm until the error 
becomes small enough. The training process is carried out 
by a program that uses a large number of input/target data, 
whch can be obtained from simulations or from experi- 
mental results. 

4.2 Neural PWM control 
A feedforward neural network works as hystere:;is com- 
parator in the PWM control (Fig. 4). This network is 
designed with two inputs and two layers, the hidden with 14 
neurons and the output layer with 1 neuron. The activation 
functions are log-sigmoid in the hidden layer and linear in 
the output layer. The training algorithm used is back- 
propagation. 

The comparator outputs depend on the inputs and their 
evolution. The chosen configuration has two inputs, the 
error signal in k and its value in the previous time k-1. 
Network topology is shown in Fig. 7. 

To fix the network weights, it is necessary to compare the 
network outputs with the outputs of a real electrical system. 

error ( 1 )  

i,, actual - i,, ref 

Fig. 7 Topology of,feedfonvarzl network 

5 Results of practical cases 

To check the proposed design, the electrical system, with 
control block included, was simulated in a Matlab-Simulink 
application. A three-phase sinusoidal source, a model of a 
three-phase AC regulator and the power circuit of an active 
power filter were developed in the same application, 
computer-aided by a power system blockset, to obtain the 
load voltages and currents of the electrical system. In Fig. 8, 
the Simulink diagram of a complete compensatory electrical 
system is shown. 

The control block is presented in Fig. 9. An adaptive 
network block estimates the load voltages and currents. The 
difference between the actual currents and their estimated 
active components is the nonactive current used as reference 
compensation currents. On the other hand, the feedforward 
block works on-line as the hysteresis comparator, their 
inputs are reference and actual compensation currents, and 
their outputs are the trigger signals of power circuit IGBTs. 

To train the feedforward network, it is necessary to know 
the real system input and output signals. So, the electrical 
system was simulated in Simulink, using a relay block as a 
comparator to obtain inputs and target-output signals. To 
train the feedforward network, the Matlab neural networks 
toolbox was used. A training programme using Matlab 
routines was developed. Initff initialises Network weights 
and Tvninlm carries out the training process to fix the final 

nonlinear 
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- 

___L 
meas. - 

I 

current 
meas. C3l circuit 

current 

Fig. 8 Simulink diagram of electrical system 
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Fig. 9 Simulink control block 

weights using pattern signals. After the training process, 
Simufallows the network to work on-line as a comparator. 
The error of this comparator block was specified at 0.1 % as 
a maximum goal. The error signal during the training 
process is shown in Fig. IO. 

10’ 

$? l oo  
i g 10.’ 

1 o z  

0 20 40 60 80 100 
iteration 

Fig. 10 Error during training process 

The proposed design was applied in a three-phase four- 
wire power system, a three-phase balanced and sinusoidal 
voltage source supplying a nonlinear load, a controlled 
three-phase converter. 

The electrical system has been simulated in a Matlab- 
Simulink application. Next, the evolution of several wave- 
forms per phase from full load to 50% load is shown. 
Fig. 1 l(u) presents load voltage; actual and estimated load 
current are shown in Fig. Il(b) and ll(c). 

The estimation of equivalent conductance (Fig. 12(a)) 
shows the transient evolution of process. The compensation 
current (Fig. 12(b)) is the result of hysteresis band control 
used. Fig. 12(c) presents the source current of the 
compensated system. 

Signal evolution depends on the initial weights of 
adaptive networks. Those weights have been chosen as null 
in this example. The dynamic filter response is one-and-a- 
half periods approximately. 

On the other hand, a second practical case was simulated, 
an unbalanced three-phase AC-regulator. As above, 
Figs. 13 and 14 show the main waveforms of ths  case: 
the load voltage, the load current, the estimated load 
current, the estimated equivalent conductance, the compen- 
sation current and the source current. The neutral current is 
null in the compensated system (Fig. 14(d)). 
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Case I :  Controlled three-phase converter compensation 

At the moment, the practical implementation of ANN 
boards is not well developed. However, the authors are 
working to obtain a practical system, which allows the 
ANN proposed control to be emulated. The controller 
board developed by dSPACE contains a real-time processor 
and the necessary in/out interfaces to allow the control 
operation to be carried out. In particular, the DS1103 PPC 
controller board is equipped with a PowerPC processor for 
fast floating-point calculation at 400 MHz. This hardware 
supports the real time interface (RTI) tool that allows 
programming to be done viu Simulink. The RTI carries out 
the real time code generation, it downloads the real-time 
model in the controller board and makes it start. Next, this 
will allow the experimental performance of the proposed 
control to be checked with this hardware. 

6 Conclusions 

A control method of an active power filter has been 
presented. The PWM control is designed with two neural 
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Cuse I :  Controlled three-phase converter cotnpensution 
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(U) load voltage 
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Case 2: Three-phuse AC-reguhtor compensation 

network blocks. The first one has two adaptive neurons, 
which estimate load voltage and current components. A 
simple method for obtaining fundamental active currents 
and reference compensation currents has been described. In 
the hysteresis band control used, the common comparators 
have been substituted by feedfonvard neural networks with 
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Cbse 2: Tliree-phase A C-regubtor e.stirnution 

three layers trained by the backpropagation algorithm. The 
use of neural principles has increased the control speed and 
reliability by the new parallel computing architecture. The 
results of a practical case simulation in the Matlab-Simulink 
application have been presented. The control design 
proposed allowed an excellent filter dynamic response to 
load changes to be obtained. 
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