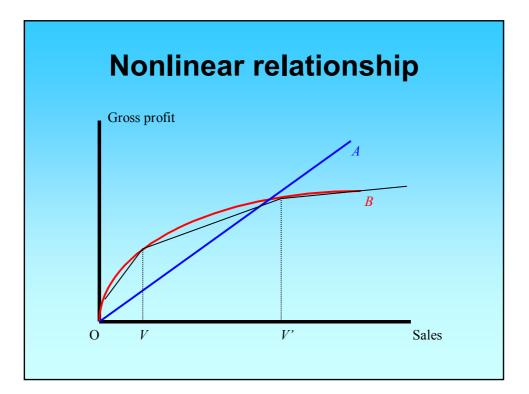
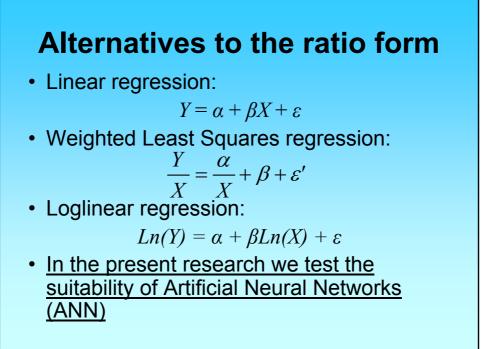
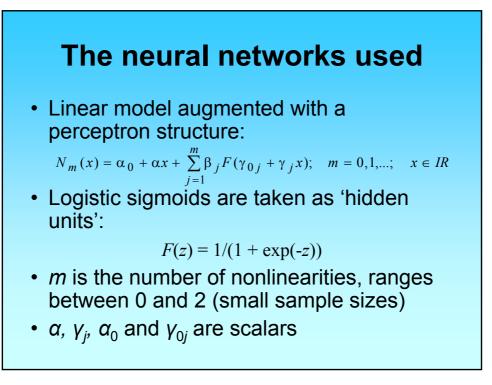
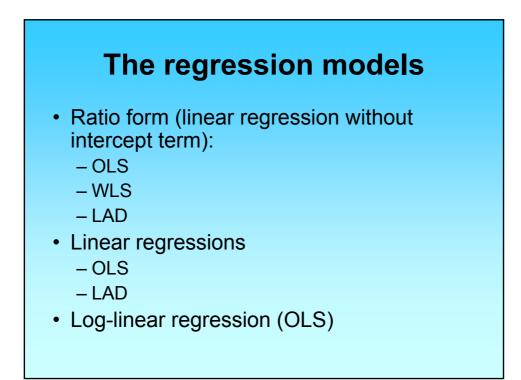

2005 DIGITAL ACCOUNTING RESEARCH CONFERENCE OCTOBER, 13-14 – HUELVA – SPAIN


Assessing the liquidity of a firm: artificial neural networks as an alternative to the current ratio


Javier De Andrés Pedro Lorca Manuel Landajo Universidad de Oviedo

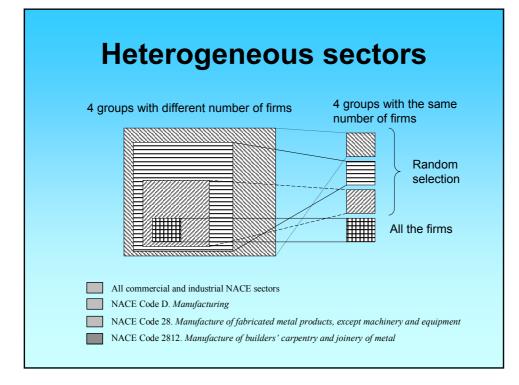

The measure of a firm's liquidity

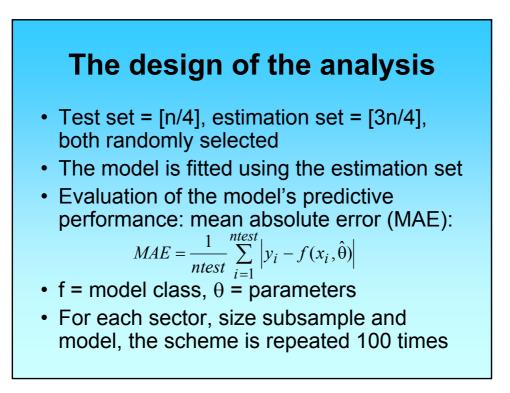
- The relation between Current Assets (CA) and Current Liabilities (CL)
- The ratio form CA/CL is very popular
- Assumptions: the relation must be both:
 - Linear and,
 - Strictly proportional
- The ratio form is equivalent to a regression model with a null intercept



Two alternative learning situations

- Least Squares (LS) regression: we wish to learn the regression line which passes through conditional expectation of Y (CA) given X (CL)
- Least Absolute Deviation (LAD) regression: We want to estimate the regression line which passes through conditional medians of Y (CA)




The neural models

- ANN models fitted by OLS
- ANN for logs (replaces CA and CL by their natural logs)
- ANN models fitted by WLS (the same weight as in the case that the ratio model is correct)
- LAD ANN
- Weighted LAD ANN

The database

- Bureau Van Dijk -Informa (SABI) database
- · Small and medium enterprises
- Years 1998 through 2002
- Four-digit sector: *Manufacture of builders'* carpentry and joinery of metal
- Subsamples: Microenterprises, Small enterprises, Medium enterprises
- Heterogeneous sectors

Results (ANN vs. regressions)

Sector	% of the best models that are neural-based	% of the best models that are regression-based	<i>p</i> -value of a binomial test ^{<i>a</i>}
2812	50%	50%	1,000
28	65%	35%	0,263
D	60 %	40%	0,503
Firms from all sectors	45%	55%	0,824
SIZES			
Size	% of the best models that are neural-based	% of the best models that are regression-based	<i>p</i> -value of a binomial test ^a
Micro-enterprises	80%	20%	0,012
Small enterprises	70%	30%	0,115
Medium-size			0,824
enterprises	45%	55%	
Firms of all sizes	25%	75%	0,041
ALL THE TESTS			
	% of the best models that are neural-based	% of the best models that are regression-based	<i>p</i> -value of a binomial test ^a
	55%	45%	0,434

Results (AMAE of the best models)

Average error rates for each level of sectoral heterogeneity and each size sub-sample

	2812 NACE	28 NACE	D NACE	ALL SECTORS
1	0,003113782	0,004970466	0,002773776	0,001550522
2	0,014970824	0,022638738	0,013587406	0,006329424
3	0,111504862	0,160341132	0,080191232	0,056774652
А	0,012406176	0,019389416	0,011237648	0,006454936

1. Micro-enterprises 2. Small enterprises 3. Medium-size enterprises A. Firms of all sizes

Average error rates for each size sub-sample

 1
 2
 3
 A

 0,003102137
 0,014381598
 0,10220297
 0,012372044

1. Micro-enterprises 2. Small enterprises 3. Medium-size enterprises A. Firms of all sizes

Future research lines

- The study of other indicators (profitability ratios, etc.)
- The use of more general quantile modelfree regressions
- The adoption of a dynamic perspective, including time evolution of CA and CL as relevant inputs