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Recently, Computational Neural Networks (CNNs) and fuzzy inference systems have been

successfully applied to time series forecasting. In this study the performance of a hybrid

methodology combining feed forward CNN, fuzzy logic and genetic algorithm to forecast

one-day ahead daily water demands at irrigation districts considering that only flows in

previous days are available for the calibration of the models were analysed. Individual

forecasting models were developed using historical time series data from the Fuente Pal-

mera irrigation district located in Andalucı́a, southern Spain. These models included

univariate autoregressive CNNs trained with the Levenberg–Marquardt algorithm (LM). The

individual models forecasting were then corrected via a fuzzy logic approach whose

parameters were adjusted using a genetic algorithm in order to improve the forecasting

accuracy. For the purpose of comparison, this hybrid methodology was also applied with

univariate autoregressive CNN models trained with the Extended-Delta-Bar-Delta algo-

rithm (EDBD) and calibrated in a previous study in the same irrigation district.

A multicriteria evaluation with several statistics and absolute error measures showed that

the hybrid model performed significantly better than univariate and multivariate autore-

gressive CNNs.

ª 2008 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction. General scope of the work decided by the farmers. Therefore, they allow farmers to
Information regarding water demand in irrigated areas is

basic information for the development and implementation of

successful water resource management tools given that irri-

gated agriculture is the largest user of water throughout the

world, accounting for 87% of consumptive uses (ONU, 1997;

Sumpsi et al., 1998). Also, forecasting of water demand is one

of the main problems in the design, management and

modernisation of water supply and distribution systems.

Actually, most pressurised irrigation systems operating

on-demand deliver water with the flow rate and pressure

required by farm irrigation systems, sprinkling or micro-irri-

gation, and respecting the time, duration and frequency
o-Calvo), juanc@uhu.es
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operate their irrigation systems with a large freedom with

respect to other types of delivery schedules. Usually the

Clément formula (Clément, 1966; Clément and Galand, 1979) is

used to design collective irrigation systems operating on-

demand. This approach does not permit to take into consid-

eration the variety of flow regimes occurring in a collective

irrigation system. So, a risk threshold is accepted, i.e. during

the operation of the system, flow rates higher than those

assumed at design may occur with low probability due to the

seasonal and daily variation in water demand. Consequently,

a large spatial and temporal variability of pressure and flow

rates available in the hydrants may occur and affect network

performance and even crop yield (Pereira, 1999; Lamaddalena
(J.C. Gutiérrez-Estrada).
. All rights reserved.
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Nomenclature

C fuzzy curve

CNN Computational Neural Network

d total number of observations of the validation set

E2 efficiency coefficient

EDBD Extended-Delta-Bar-Delta algorithm

FAM Fuzzy Associative Memory

HI fuzzy partition, category High

LM Levenberg–Marquardt algorithm

LO fuzzy partition, category Low

NFI Naı̈ve Forecast I model

NO fuzzy partition, category Normal

PI Persistence Index

Qt observed water demand at time t, m3 day�1bQ t estimated water demand at time t, m3 day�1

Q average of the observed water demand, m3 day�1

R2 determination coefficient

RMS square root of the mean square error, m3 day�1

SEP percent standard error of prediction, %

VH fuzzy partition, category Very High

VL fuzzy partition, category Very Low

Y defuzzed value. Correction of the CNN output

value, m3 day�1

yCentre( f ) geometrical centre of the output fuzzy values

mi fuzzy membership function
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et al., 2007; Calejo et al., 2008). That is why the operating plan of

water distribution systems is typically prepared for a period of

24 h in advance in order to programme the pumps and valves

control settings (Alvisi et al., 2007).

Alternative methods to the Clément formula are being

studied to generate flow rates through the simulation or

estimation of the irrigation water demand taking into

consideration the farmers’ behaviour, i.e. that farmers’ irri-

gation decisions vary relative to the assumptions made at

design and planning phase (Pulido-Calvo et al., 2003b; Khadra

and Lamaddalena, 2006; Moreno et al., 2007; Calejo et al., 2008).

Therefore, the water demand is one of the main parameters to

evaluate because its forecasting is fundamental to the real-

time operational control of an on-demand water distribution

system (Pulido-Calvo et al., 2003a).

For many years, methodologies for consumer demand

modelling and prediction in a real-time environment for on-

demand water distribution systems have been studied (Zhou

et al., 2002; Alvisi et al., 2007). Two of the major approaches

presented in the literature to assess the water demand involve

conceptual (physical) modelling and system theoretical

modelling (sometimes referred as black box approach).

A conceptual model generally aims to formulate the daily

water requirements for crop irrigation by the rates of perco-

lation and evapotranspiration that have been predicted at the

stage of irrigation planning. Many models have been used to

simulate these water requirements, from empirical or func-

tional (Doorenbos and Pruitt, 1977; Doorenbos and Kassam,

1979; Allen et al., 1998) to mechanistic (Van Aelst et al., 1988).

However, water requirements calculated for irrigation plan-

ning do not always meet the actual use (that is, consumer

demand) due to changes in the field environment such as

weather conditions and farmers’ behaviour, which can influ-

ence the actual amounts of water used (Pulido-Calvo et al.,

2003b; Khadra and Lamaddalena, 2006; Moreno et al., 2007;

Pulido-Calvo et al., 2007). Actual water management in some

irrigation districts is carried out depending only on the expe-

rience and knowledge of the administrator although there is

always a need to forecast daily water demand.

In the system theoretical approach a model is applied to

identify a direct mapping between inputs and outputs without

detailed consideration about the internal structure of the

physical processes. Generally, compared with a conceptual

model, the theoretical approach has much less data
requirements. Many practical situations may not justify the

time and the effort required to develop, to validate and to

implement a conceptual model as their main goal is not to

deeply access the irrigation water demand physical process,

but to get from a given system answers that, despite not being

fully understood, prove to be accurate enough. One of those

practical situations involves water demand short-term

forecasting.

It should be pointed out that the data availability often

determines the model choice. In fact, continuous measure-

ments of climatic data (precipitation, temperature, relative

humidity, wind speed, etc.) can be easily and cost effectively

obtained when compared with continuous measurements of

soil characteristics, initial soil moisture, infiltration, etc.

Therefore, a black box approach that operates based on

accessible and commonly available data is much more suit-

able for operational forecasting purposes than a conceptual

model.

The Artificial or Computational Neural Networks (ANNs or

CNNs) can be classified as black box type models. A CNN is

a non-linear mathematical structure capable of representing

the complex non-linear processes that relate the inputs to the

outputs of a system. CNNs models are increasingly being

applied in many fields of science and engineering and usually

provide highly satisfactory results. Some specific applications

of CNN to water resource management and planning include

the modelling of monthly, daily and hourly rainfall–runoff

process (Hsu et al., 1995; Lorrai and Sechi, 1995; Mason et al.,

1996; Abrahart et al., 1999; Tokar and Johnson, 1999; Thir-

umalaiah and Deo, 2000; Tokar and Markus, 2000; Chiang et al.,

2004; Moradkhani et al., 2004; Anctil and Rat, 2005; Agarwal

et al., 2006), real-time river and lake stage forecasting (Thir-

umalaiah and Deo, 1998, 2000; Abrahart and See, 2000, 2002;

See and Openshaw, 2000; Cameron et al., 2002; Nayebi et al.,

2006; Ondimu and Murase, 2007), rainfall forecasting (French

et al., 1992; Zhang et al., 1997; Kuligowski and Barros, 1998),

groundwater modelling (Roger and Dowla, 1994; Yang et al.,

1997), assessment of stream’s hydrologic and ecological

response to climate change (Poff et al., 1996), drought analysis

(Shin and Salas, 2000), etc.

Neural approaches for water demand prediction in urban

(Griñó, 1992; Jain et al., 2001; Bougadis et al., 2005; Firat et al.,

2008) and irrigation delivery systems (Pulido-Calvo et al., 2002,

2003a, 2007) have been reported in the literature. Essentially
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two basic techniques were developed. The first technique

consists of establishing models based on the relation between

the demand data and other influential factors. In the case of

urban delivery systems, the models are based on the relation

between the demand data and demographic and environ-

mental factors. In the case of irrigation water-delivery

systems, the models are based on the relation between the

demand data, climatic and crop data. The second technique

calculates the relationship between present and past demand

data (stochastic analysis of time series).

In this paper, CNN approach was applied to the short-term

forecasting of daily irrigation water demand. In the applica-

tions carried out only water demand data (water demand time

series) were considered as input data. In the time series

forecasting issues, past observations of one or more variables

are collected and introduced as input data in a model that

describes the underlying relationships among those variables

and allows estimating future realisations of one of the same

(Zhang, 2003). Recently, CNNs have been extensively applied

to time series forecasting (Al-Saba and El-Amin, 1999;

Abrahart and See, 2000; Zhang et al., 2001; Zhang, 2003;

Gutiérrez-Estrada et al., 2004; Pulido-Calvo and Portela, 2007).

Some authors (Park, 1998; Abrahart and See, 2000; Pulido-

Calvo et al., 2002, 2003a; Gutiérrez-Estrada et al., 2005; Pulido-

Calvo et al., 2007; Pulido-Calvo and Portela, 2007) in works

applied to forecasting of different kinds of time variables

using multiple regression, Autoregressive integrated moving

average (ARIMA) and/or neural network models, indicate that

the forecasts provided by the models in each time period were

systematically very close to the data observed in the previous

time period (naı̈ve behaviour). In order to improve the

performance of the daily water demand forecasts, and so to

solve this systematic displacement between observed and

estimated values, a hybrid methodology combining CNN,

fuzzy logic and genetic algorithms was applied to take

advantage of the strength of these models.

The neural networks, fuzzy logic and genetic algorithms

are intelligent computational methods or soft-computing

technologies that can be extremely effective when used on

their own. However, when combined together, the individual

strengths of each approach can be exploited in a synergistic

manner for the construction of powerful, hybrid and intelli-

gent systems (See and Openshaw, 2000). Recent works have

demonstrated that combining different models to create

a single forecast produces better performance than the use of

the best individual model alone (Pelikan et al., 1992; Ginzburg

and Horn, 1994; Luxhoj et al., 1996; Wedding and Cios, 1996;

Zhang, 2003). Some specific applications of hybrid models to

water resource management have been reported by Sham-

seldin and O’Connor (1999), See and Openshaw (1999, 2000),

See and Abrahart (2001), Chang et al. (2005), Guan and Aral

(2005), Keskin et al. (2006), Kisxi and Öztürk (2007), Pulido-Calvo

and Portela (2007) and Firat and Güngör (2008). The basic idea

is that a real-world problem is often complex in nature and

any single model may not be able to capture different patterns

equally well. Therefore, combining different models can

increase the chance to capture different patterns in the data

and improve forecasting performance (Zhang, 2003).

The purpose of this paper is to assess the potential

improvements in performance that can be achieved by using
soft-computing technologies for short-term irrigation water

demand forecasting. The methodology for combining each of

the techniques into a single forecasting solution is outlined.

Water demand historical data from an irrigation distribution

system in southern Spain were used to test the methodology.
2. Material and methods

2.1. Study area and data source

The proposed methodology was applied to the demand pres-

surised system of the irrigation district of Fuente Palmera,

located in the Guadalquivir valley (Córdoba province,

southern Spain) (Fig. 1). The mean water consumption in the

zone is 16.5� 5.9 h m3 annually and must be drawn from the

Guadalquivir River. The average irrigated area is approxi-

mately 5000 ha and is irrigated by sprinkling and micro-

irrigation on demand.

The pressurised irrigation system has two pumping

stations in series. The first station carries water from the

Guadalquivir River to a 5000 m3 tank, which is the aspiration

chamber for the second station, which discharges directly into

the distribution line (Fig. 1). Given that the storage capacity of

this tank does not allow the two pumping stations to operate

independently, it is used to provide pressure to the branched

pipeline system.

The main water supply system is branched and carries

water from the booster station (second pumping station) to 78

different groups of farmers, each one whom has only one

outlet. The minimum, maximum and average areas of the

group of farmers are 21.6, 218.3, and 67.4 ha, respectively.

From the main network outlets, the water is distributed to the

plots through a secondary pipe network that is underground

and fixed. This network includes all of the underground pipe

networks for each group of farmers; these pipes branch off

from the outlet to each hydrant of the farming units. The

portable water supply system is made up of a number of pipes

and portable elements belonging to each group of farmers and

includes anything from hydrants to sprinklers or drips on the

plots, whose average area is 6.25 ha. The total lengths of the

main and secondary pipes networks are 38,000 and 141,000 m,

respectively.

The more representative crops, according to areas occupied

in a period of 14 consecutive irrigation seasons (from 1984–1985

to 1997–1998), were 43.31� 18.68% cotton, 23.78� 11.60%

sunflower, 14.30� 8.30% wheat, 3.37� 2.79% sugar beet,

2.81� 3.47% olive, 2.61� 3.39% corn, 1.41� 2.52% sorghum,

1.23� 1.07% citric fruits and 1.12� 0.99% melon/watermelon.

Measured values of daily consumer demand data from 1988,

1989, 1990 and 1991 years were available from continuous

records of booster station outputs. To determine irrigation

water requirements (Fig. 2) and to compare with the consumer

water demands, crop and climatic data from these three irri-

gation seasons were used. The crop data (crop coefficients and

duration of the development stages) were obtained from agri-

cultural experimental studies near the area and from other

studies. The climatic data were collected at the Córdoba airport

meteorological station. Mean annual rainfall in the area was

608 mm, with a standard deviation of 229 mm. Because of the



Fig. 1 – Scheme of main water supply system and localisation of Fuente Palmera irrigation district. The number of control

nodes of pressure and flow are showed.
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area’s Mediterranean climate, there is a wet season in winter

and a very dry season in summer. Consequently, monthly

rainfall distribution is very irregular. The mean air temperature

ranges from 10 �C in winter to over 27 �C in summer. The daily

reference evapotranspiration ET0 was estimated using the

Hargreaves method (Pulido-Calvo et al., 2003a,b).

The Fuente Palmera district can be considered represen-

tative of irrigation areas located in the interior of the Anda-

lucı́a region (south Spain) (Rodrı́guez-Dı́az et al., 2004a).

A fundamental characteristic of this type of irrigation district

is that the mean irrigation water requirements are normally

higher than measured values of consumer water demands

(Pulido-Calvo et al., 2003a,b; Lorite et al., 2004; Pulido-Calvo

et al., 2007; Rodrı́guez-Dı́az et al., 2008). So, the average

values for the index Annual Relative Water Supply (ARWS)
(Malano et al., 2004; Rodrı́guez-Dı́az et al., 2004b), which

relates the total volume of water applied (irrigation plus

rainfall) to the volume of water required by the crop

(computed as gross irrigation requirements plus rainfall), are

normally lower than 1. This indicates a deficit-irrigation

situation. This indicator in the Fuente Palmera irrigation

district was 0.6� 1.8.

The relatively high water productivity found in the Fuente

Palmera district is an other characteristic of this type of irri-

gation district. This is due to a combination of deficit irrigation

and the widespread use of extensive crops as cereals, cotton,

sunflower and olive trees which efficiently use a substantial

proportion of the annual rainfall in Mediterranean climates,

thus lowering their irrigation requirements (Lorite et al., 2004;

Rodrı́guez-Dı́az et al., 2008).



Fig. 2 – Water requirements of cropping pattern. Mean

requirements in each 10-day period with their standard

deviations are presented.
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Actually, the operational control of the distribution

system is based on averaged demand profiles for each 10-

day period obtained from the experience and knowledge of

the administrator. When there is a significant difference

between the demand profile assumed and that which

materialises as the day progresses, it is necessary to re-run

the pump-scheduling software with the revised data. This

may imply that there are pressure and flow non-acceptable

values during certain time period of the system operation

and effect network performance and crop yield. Conse-

quently, the alternative is to develop an adaptive demand-

forecasting process which can be updated daily (as the

proposed approach in this paper).

The irrigation district selected and the water demand data

used for hybrid model calibration and validation were the

same that those utilised in the work of Pulido-Calvo et al.

(2003a). In this study, the performance of CNN models was

compared with linear multiple regression analysis and

univariate time series models (exponential smoothing and

ARIMA models) in predicting consumer demands for irrigation

water. In CNN and multiple regression, the relationship

between present and past water demand data and climatic

and crop data (for previous days) was examined, that is to say

that univariate and multivariate models were compared.

2.2. Computational Neural Network models

CNNs are mathematical models inspired by the neural archi-

tecture of the human brain. CNNs can recognise patterns and

learn from their interactions with the environment. The most

widely studied and used structures are multilayer feed

forward networks (Rumelhart et al., 1986). A typical four-layer

feed forward CNN has g, n, m and s nodes or neurons in the

input, first hidden, second hidden and output layers, respec-

tively (the notation of the neural network is ( g,n,m,s)). The

parameters associated with each of the connections between

nodes are called weights. All connections are feed forward,

that is, they allow information transfer only from an earlier

layer to the next consecutive layers.
To determine the set of weights, a corrective–repetitive

process called learning or training of the CNN is performed. This

training helps to define the interconnections between neurons

(weights), and it is accomplished by using known inputs and

outputs (training sets or training patterns), and presenting these

to the CNN in some ordered manner, adjusting the intercon-

nection weights until the desired outputs are reached. The

strength of these interconnections is adjusted using an error

convergence techniqueso that a desiredoutput will beproduced

for a given input. There are manytraining methods. Inthiswork,

the same neural architectures trained with the Extended-Delta-

Bar-Delta algorithm (EDBD) by Pulido-Calvo et al. (2003a) were

re-calibrated with a variation of back-propagation algorithm

(Rumelhart et al., 1986), known as the Levenberg–Marquardt

algorithm (LM) (Shepherd, 1997). This is a second-order non-

linear optimisation algorithm with very fast convergence and

has been recommended by several authors (Tan and Van Cau-

wenberghe, 1999; Anctil and Rat, 2005).

Let epoch denote the time period that encompasses all the

iterations performed after all the patterns are displayed. In the

study presented in this paper, the learning process was

controlled by the method of internal validation (20% of cali-

bration data to test the error at the end of each epoch)

(Tsoukalas and Uhrig, 1997; Gutiérrez-Estrada et al., 2004). The

weights are updated at the end of each epoch. The number of

epochs with the smallest error of the internal validation

indicates the weights to select.

The optimal numbers of hidden layers and nodes in the

hidden layers were determined by trial and error. CNNs with

1–2 hidden layers and 2–14 hidden nodes were successively

trained based on the calibration data set. Each CNN architec-

ture was trained with a pool of 10 repetitions due to the

random initial values of weights. The CNN having the best

performance when applied to the validation data set was

selected. CNN models were implemented using STATISTICA

6.0 (Statsoft, Inc., 1984–2002).

The daily water demand data from 1988, 1989 and 1990

years were used for the model calibration (training in the

CNN). To check model validation (generalisation capacity in

the CNN), data from the year 1991 were used.

2.3. CNNþ fuzzy logic hybrid model

Fuzzy logic is based on the mathematics of fuzzy set theory

where the classical notion of binary set membership has been

modified to include partial membership ranging between

0 and 1 (Zadeh, 1965). Fuzzy sets, in contrast to their crisp

counterparts, have ambiguous boundaries and therefore

gradual transitions between defined sets, allowing for the

uncertainty associated with these concepts to be modelled

directly. The construction of a fuzzy model implies, in a first

step, to define for each model variable a series of overlapping

fuzzy sets (or geometrical partitions) and the mapping of

inputs to outputs expressed as a set of IF–THEN rules (Kosko,

1997). Subsequently, it is necessary to define the method that

transforms the fuzzed inputs in defuzzed outputs or quanti-

tative outputs.

The fuzzy sets and rules are referred as the fuzzy model

knowledge base. Crisp inputs to the model are first fuzzified via

this knowledge base (called Fuzzy Associative Memory or FAM),
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and a fuzzy inference engine is then used to process the rules in

parallel via a fuzzy inference procedure such as the max–min or

max–product operations (Jang et al., 1997). The explicit rela-

tionship between the partitions of the input fuzzy sets and the

output fuzzy set is stored in a FAM, which initially is created by

a human expert on the basis of his experience.

In this paper, the fuzzy logic rule-based model has two

input fuzzy sets (1: forecasts obtained from the best CNN,

associated to five triangular partitions labelled as Very Low

[VL], Low [LO], Normal [NO], High [HI] and Very High [VH], and

2: representative categories of monthly water demand

patterns, associated to five singleton partitions labelled as

Very Low [VL], Low [LO], Normal [NO], High [HI] and Very High

[VH]) and one output fuzzy set (correction of forecasts

obtained from the best CNN, associated to nine triangular

partitions labelled as Very High Negative [VH�], High Negative

[HI�], Normal Negative [NO�], Low Negative [LO�], Very Low

[VL], Low Positive [LOþ], Normal Positive [NOþ], High Positive

[HIþ] and Very High Positive [VHþ]).

Usually, there is often a large random component super-

imposed to the monthly water demand patterns, therefore,

the data should be pre-processed in order to reduce this non-

informative contribution and obtain representative proto-

types to be used in the fuzzy reasoning algorithm. The

selected method relies on the concept of fuzzy curve. The use

of fuzzy curves was introduced by Lin and Cunningham (1995)

and Lin et al. (1996) as a way to approximate a set of data with

a minimum number of fuzzy rules. In this context, for the

relationship between N possible inputs (water demand of N

previous days) Qt�N, ., Qt�1, and one output (water demand of

day t) Qt, the fuzzy curves were created by the following steps:

(a) Data at M points (Qt�1,k, ., Qt�N,k; Qt,k), k¼ 1, 2, ., M, were

collected to represent the possible relationship between

the inputs (Qt�1,k, ., Qt�N,k) and the output (Qt,k). N¼ 5 was

selected based on autocorrelation and partial autocorre-

lation functions of the demand series.

(b) For each previous day (t� 1, ., t�N ), a fuzzy membership

function mi,k was created with ij points and i¼ 1 for the first

previous day (t� 1),., i¼N for the Nth previous day

(t�N ):

mi;k ¼ exp

"
�
�

ij � i

b

�2
#
; (1)

where b is a parameter controlling the spread of the

membership function. In this case b¼ 1 (20% of the number of

previous days) was selected (Lin and Cunningham, 1995;

Marsili-Libelli, 2004).

(c) These fuzzy membership functions were defuzzified to

produce a global fuzzy curve C for each month and each

category (representative prototype of monthly water

demand) for all input variables Qi (water demand of N

previous days) using

C ¼
PM

k¼1

PN
i¼1

�
Qi � mi;k

�PM
k¼1

PN
i¼1 mi;k

: (2)

As example, Fig. 3 shows how to determine the fuzzy curve of

one day (k¼ constant). The water demand calibration data set
(years 1988, 1989 and 1990) was ranged in five categories {Very

High (VH): 219,457–274,320 m3 day�1; High (HI): 164,593–

219,456 m3 day�1; Normal (NO): 109,729–164,592 m3 day�1; Low

(LO): 54,865–109,728 m3 day�1; Very Low (VL): 0–54,864 m3 day�1}.

Fuzzy curves (or representative prototypes of monthly water

demand) were obtained for each month and each category from

daily water demand calibration data. Thus, for example, there

are three fuzzy curves for April (NO; LO; VL) and four fuzzy curves

for June (HI; NO; LO; VL) (Fig. 4).

For each daily water demand data from 1991 year (valida-

tion data), the fuzzy curve of one day k for the month m is

compared by means the square root of the mean square error

(RMS) error value with all representative prototypes of water

demand for the month m. This comparison provides the

representative category of monthly water demand pattern for

day k of validation phase (Fig. 5).

After the inputs (forecasts obtained from the best CNN and

representative categories of monthly water demand) have

been obtained, the fuzzy solution resulting from the execution

of the rule-base is defuzzed to produce the system output

(correction of forecasts obtained from the best CNN). In this

work, the method used to obtain the system output was the

minimum rule. Also, a function that transforms the fuzzy

output into a crisp value is necessary. In this case the defuz-

zication technique was the centre of area:

Y ¼
PS

f¼1 yCentreðf Þ � mout

�
yf
�PS

f¼1 moutðyf Þ
; (3)

where the crisp value (Y ) is the geometrical centre ( yCentre( f ))

of the output fuzzy values mout( yf) with f¼ 1, ., S, where S is

formed by all contributions of rules whose degree of fulfilment

is higher than zero. Fig. 6 shows a scheme in which the

correction for one day of forecast obtained from the best CNN

is determined.

2.4. Optimising the fuzzy logic model with genetic
algorithms

In Section 2.3, how to construct a fuzzy logic model that can

estimate the corrections of forecasts obtained from a CNN has

been shown. The accuracy of this estimation depends on the

parameters of the fuzzy logic model: (1) the shape of fuzzy sets

or geometrical partitions; (2) the overlapping level of fuzzy

sets; and (3) the definition of IF–THEN rules. A genetic algo-

rithm has been used to find the optimal values of these

parameters for the fuzzy logic model. Genetic algorithms are

non-linear search and optimisation methods inspired by the

biological processes of natural selection and survival of the

fittest (Holland, 1975; Goldberg, 1989). This algorithm differs

from traditional search methods because it considers many

points in the search space simultaneously and therefore has

a low probability of converging to local optimum.

In a genetic algorithm the basic unit is the gene. Various

genes contain the information needed to define a chromosome

whose decoding is interpreted as an individual. In this case, the

parameters of the fuzzy logic model (boundaries and maximum

value of fuzzy triangular membership functions, the over-

lapping level of fuzzy sets and the definition of IF–THEN rules)

were codedasgenes inthechromosome.Adirect codingmethod

was carried out in this paper (Fig. 7) (Jacob, 2001).



Fig. 3 – Example showing the determination of fuzzy curve of one day.
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Once the initial information has been coded, three types of

operators (reproduction, crossover and mutation) were used

in order to evolve towards an optimal fuzzy configuration.

Reproduction is a process where chromosomes with high

fitness values in the generation t yield a high number of sons

(copies) in the next generation. Crossover is an operator that

mixes two chromosomes through a random process to take

advantage the best qualities of each chromosome. The

mutation operator changes the values of bits associated to

a gene with a very low probability, which can produce

unsuitable fuzzy configurations (abortions) or pre-adaptive

fuzzy configurations that generate best solutions. In this

paper the maximum probability of reproduction for a good

individual was 0.7. The probabilities given to the crossover
and mutation processes were 0.3 and 0.1, respectively. The

mutation radius of GEN1 (CNN output) and GEN3 (Fuzzy

output) were selected as 10% of the maximum value consid-

ered for each fuzzy set. The mutation radius of GEN4 (FAM)

was 2.

A fitness function (a term used in genetic algorithms which

is an objective function) is required to apply the genetic

algorithm (Chen et al., 2000). In this paper, the RMS error

between observed and estimated water demand was used.

A leave-one-out cross-validation procedure is used to opti-

mise the unknown parameters of the fuzzy logic model.

Cross-validation techniques estimate accuracy of a forecast

model from a series of independent data sets over all the

available data (year 1991). For a data sample of size K days, the



Fig. 4 – Representative prototypes of water demand of April and June months.
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leave-one-out cross-validation method involves training the

model using the K� 1 days of data and then the forecasting

error value for the day that have been left out is obtained. This

is repeated K times until all days have been left out once.

Finally, the model error (RMS error) was computed averaging

the K forecasting error values (Goutte, 1997; Moradkhani et al.,

2004; Ruiz et al., 2006).

2.5. Measures of accuracy

To assess the performance of the models to forecast daily

irrigation water demands in delivery systems (CNN;
CNNþ fuzzy logic) during the validation phase, several

measures of accuracy were applied (Yapo et al., 1996;

Legates and McCabe, 1999; Abrahart and See, 2000). The

correlation between observed and predicted water

demand was expressed by means of the correlation

coefficient R. The coefficient of determination (R2)

describes the proportion of the total variance in the

observed data that can be explained by the model. Other

measures of variances applied were the percent standard

error of prediction (SEP) (Ventura et al., 1995) and the

coefficient of efficiency (E2) (Nash and Sutcliffe, 1970;

Kitanidis and Bras, 1980).



Fig. 5 – Example showing the comparison between the fuzzy curve of June 25 and all prototypes of water demand of June.
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In addition, it is advisable to quantify the error in the same

units of the variables. These measures, or absolute error

measures, include the RMS given by

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd
t¼1ðQt � bQ tÞ2

d

s
; (4)

where Qt is the observed water demand at the time step t; bQ t is

the estimated water demand at the same time step t; and d is

the total number of observations of the validation set.

The SEP is defined by

SEP ¼ 100

Q
RMS; (5)

where Q is the average of the observed water demand of the

validation set. The coefficient of efficiency E2 is used to see

how the model explains the total variance of the data and

represents the proportion of the variation of the observed data
considered by the model. E2 is given by

E2 ¼ 1:0�
Pd

t¼1ðQt � bQ tÞ2Pd
t¼1ðQt � QÞ2

: (6)

A value of zero for E2 indicates that the observed average Q is

as good predictor as the model, while negative values indicate

that the observed average is a better predictor than the model

(Legates and McCabe, 1999). For a perfect match, the values of

R2 and E2 should be close to one and those of SEP close to zero.

Also the Persistence Index, PI, was used for the model

performance evaluation (Kitanidis and Bras, 1980):

PI ¼ 1�
Pd

t¼1ðQt � bQ tÞ2Pd
t¼1ðQt � Qt�LÞ2

; (7)

where Qt�L is the observed water demand at the time step t� L

and L is the lead-time. In the applications carried out L was

equal to one, since only one-day ahead forecasts were



Fig. 6 – Performance scheme of CNN D fuzzy logic hybrid model.
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performed. A PI value of one reflects a perfect adjustment

between predicted and observed values, and a value of zero is

equivalent to say that the model is no better than a naı̈ve

model, which always gives as prediction the data observed in

the previous time period. A negative PI value would mean that

the model is degrading the original information, thus denoting

a performance worse than the one of the naı̈ve model (Anctil

and Rat, 2005).
For each measure of accuracy the benchmark of the worst

permissible error was calculated. McLaughlin (1983) suggests

that a naı̈ve model determines the forecasting accuracy

benchmark of any model. The basic naı̈ve model, known as

Naı̈ve Forecast I (NFI), is defined as the next period’s level will

be the same as that of the preceding period. This way, if the

forecasting model cannot do better than NFI, it should be

disqualified.



Fig. 7 – Scheme of the initial chromosome configuration.
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3. Results

The potential of ARIMA and CNN models for short-term

control of daily volumes to pump in irrigation water

distribution systems was presented by Pulido-Calvo et al.

(2003a). In this work, the best estimates were obtained with

a multivariate CNN model trained with EDBD algorithm,

considering the demands and the maximum temperatures

of the two previous days as inputs and 12 nodes in each

hidden layer [CNN(4,12,12,1) EDBD]. The best ARIMA model

[ARIMA(1,1,2)] produced estimates with higher correlation

and determination coefficients. However, this increase of

the explained variance level was not associated with an

improvement of the error magnitudes (RMS, SEP, E2 and PI).

With respect to univariate autoregressive CNN models with

water demand of five previous days as input data, the best

result was reached with 10 nodes in each hidden layer

[CNN(5,10,10,1) EDBD]. This univariate neural approach

provided worse accuracy measures than those obtained

with ARIMA(1,1,2) except in RMS, SEP and PI values

(Table 1).

The best estimates of the univariate CNN model re-cali-

brated with LM algorithm were also obtained with an archi-

tecture of 10 nodes in the first and second hidden layers

[CNN(5,10,10,1) LM]. In this case, improvements in relation to

the models mentioned above were not reached. Additionally,

the general behaviour of this model was even worse than the

NFI model (Table 1).
For all previous cases, the main error source was due to the

occurrence of systematic displacement between estimated

and observed water demands, that is to say that these models

led to predictions in day t very close to the observed water

demands in day t� 1, as is shown in the exemplification of

one-step-ahead prediction of water demand for year 1991 for

the univariate CNN models trained with EDBD and LM algo-

rithms [CNN(5,10,10,1) EDBD; CNN(5,10,10,1) LM] (Fig. 8). This

way, the PI values were not higher than 0.15 for univariate

models and were only slightly higher (PI¼ 0.21) for the best

multivariate CNN model [CNN(4,12,12,1) EDBD] (Table 1).

When the developed hybrid methodology combining

CNN, fuzzy logic and genetic algorithms was applied to the

best univariate CNN model [CNN(5,10,10,1) EDBD], significant

improvements of forecasts were achieved. With this hybrid

model [CNN(5,10,10,1) EDBDþ Fuzzy], the explained variance

increased by 8% reaching a level of 89%. Also, best error

terms were obtained in the validation phase. The RMS value

decreased 7465 m3 day�1, which supposed an SEP value

slightly greater than 20% and an efficiency coefficient very

close to 0.9. However, the most important improvement was

observed in the PI which means that the water demand in

each day resulting from hybrid model did not necessarily

approach the water demand in the previous day, as

happened in the other cases mentioned above. That is to say,

the hybrid model proved to be able to eliminate in many of

the validation phase estimates the systematic displacement

between observed and forecasted water demands (Table 1;

Fig. 8).



Table 1 – Accuracy measures calculated in the validation phase

Model R R2 RMS, 103 m3 day�1 SEP, % E2 PI

NFI 0.88 0.78 34.9 28.99 0.77 0

ARIMA(1,1,2)a 0.93 0.86 32.2 26.81 0.82 0.13

CNN(5,10,10,1) EDBDb 0.90 0.81 31.8 26.48 0.81 0.15

CNN(4,12,12,1) EDBDc 0.91 0.82 30.7 25.50 0.82 0.21

CNN(5,10,10,1) LM 0.88 0.77 35.7 29.67 0.76 �0.06

CNN (5,10,10,1) EDBDbþ Fuzzy 0.94d 0.89d 24.4d 20.27d 0.89d 0.51d

CNN(5,10,10,1) LMþ Fuzzy 0.93 0.86 27.2 22.65 0.86 0.38

NFI row indicates the accuracy measures calculated for Naı̈ve Forecast I model. a, b and c results were obtained from Pulido-Calvo et al. (2003a).

a Best ARIMA model.

b Best univariate autoregressive CNN model with water demands of five previous days as input data, trained with EDBD algorithm.

c Best multivariate autoregressive CNN model with water demands and maximum temperatures of two previous days as input data, trained

with EDBD algorithm.

d Best results.
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Additionally, the hybrid methodology proposed in this

paper was very useful when the performance of the non-

hybridised CNN model was not statistically acceptable. This

was the case of the univariate CNN model trained with LM

algorithm [CNN(5,10,10,1) LM]. Its hybridisation with the fuzzy

model [CNN(5,10,10,1) LMþ Fuzzy] allowed to obtain values

for all accuracy measures significantly better than benchmark

values of NFI model and even higher that those obtained with

the best multivariate CNN model [CNN(4,12,12,1) EDBD]

(Table 1; Fig. 8).

The schematic representation of the forecasted water

demands as a function of the observed water demands

(scatterplots between observed and forecasted water

demands) showed that the univariate CNN models

[CNN(5,10,10,1) EDBD; CNN(5,10,10,1) LM] presented the

highest dispersion along the line 1:1 (that would correspond to

the perfect adjustment between the observed and estimated

water demands), while the hybrid models [CNN(5,10,10,1)

EDBDþ Fuzzy; CNN(5,10,10,1) LMþ Fuzzy] denoted a higher

approximation of observed and estimated values. Scatterplots

for univariate CNN models and hybrid models are presented

in Fig. 8 that also includes the diagrams of the observed and

forecasted water demands from year 1991 (validation period).

This figure shows that the hybrid model [CNN(5,10,10,1)

EDBDþ Fuzzy] presented the closest match between fore-

casted and observed water demands over the entire water

demand range.

The final optimised fuzzy sets and the corresponding rule-

base of the best hybrid model [CNN(5,10,10,1) EDBDþ Fuzzy]

appear in Fig. 9. In the case of the partitions of GEN1 (CNN

output), it is possible to observe that uncertainty level

increases as the water demand is higher. So the overlapping of

the fuzzy sets Very Low [VL] and Low [LO] is minimum

compared with the overlapping between High [HI] and Very

High [VH]. Nevertheless, the highest overlapping (between

High [HI] and Very High [VH]) was lower than initially estab-

lished. Globally, this implies that the uncertainty associated

with the CNN output was smaller than originally proposed.

Moreover the genetic algorithm bred different boundaries and

maximum values for each membership function.

An evaluation of the Fuzzy Associate Memory (FAM)

which was modified by the genetic algorithm showed

a reasonable behaviour (Fig. 9). So in a general form, above
principal diagonal of FAM matrix, the categories associated

with the corrections of forecasts obtained from the neural

models had negative values. Just the opposite was found

below principal diagonal. On the other hand, the uncertainty

level associated to GEN3 (Fuzzy output) was significantly

higher than the one obtained in GEN1 and than the one

originally anticipated. This reasoning was more marked

when the correction of CNN forecast was between �36,000

and 5000 m3 day�1. In this range, the genetic algorithm

removed the Low Negative [LO�] category, which is quasi

contained among Normal Negative [NO�] and Very Low [VL]

categories. This way, any fuzzy rule was associated to this

category in the FAM matrix.
4. Discussion

The improvement of water management in an irrigation

district requires the analysis of water demand in order to

determine ways in which it may be modified and rationalised

with a view to making water management policies more

efficient and also can provide reference data for the design,

modernisation and exploitation of water-delivery systems.

For this reason, in the work of Pulido-Calvo et al. (2003a)

approaches were examined based on linear multiple regres-

sions, univariate time series models (exponential smoothing

and ARIMA models) and univariate–multivariate autore-

gressive CNNs for consumer demand modelling and predic-

tion in a short-term environment for an on-demand irrigation

water distribution system. The goal of this paper was to assess

possible improvements by using a hybrid methodology

combining CNNs, fuzzy logic and genetic algorithms in one-

step-ahead daily water demand forecasting.

The results revealed that the hybrid methodology was

characterised by a higher accuracy in terms of all standard

and relative statistical measures and unbiased forecasts.

Additionally, the best hybrid model explained 89% of the

variance, produced forecasts that had SEP values less than

21% and with the capacity to predict the amplitude, start and

end of the irrigation season. These results were better than

those obtained by Pulido-Calvo et al. (2003a) in the same irri-

gation district using the same calibration and validation data

and than those obtained by Griñó (1992) in the forecasting of



Fig. 8 – Exemplification of one-step-ahead prediction of water demand for year 1991, and scatterplot between observed and

estimated water demand (validation period).
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daily demand time series in an urban water system. In these

works, additional inputs to water demand data as maximum

temperatures of previous days or seasonal factors were added

to improve the learning capacity of CNNs. These comparatives

provide evidences that the hybrid methodology developed in

this paper for water demand forecasting can offer a higher

degree of reliability and accuracy considering only as input

data water uses in previous time steps.

Moreover, the improvements reached in goodness-of-fit

with the hybrid model developed in this paper regarding to

traditional neural approaches were slightly higher than the

results obtained by Zhang (2003) and Pulido-Calvo and
Portela (2007) in different time series forecasting combining

linear and non-linear models (ARIMA and CNN), and similar

to those obtained by Chang et al. (2005) for flood forecasting.

In this last case, back-propagation neural networks were

compared with a hybrid version of EACH learning algorithm

and a fuzzy inference system. The higher forecast capacity of

hybrid models as the one proposed in this paper can be

related with the presence of non-stables or changing

patterns typically included in time series data which add

a high level of uncertainty that cannot be extracted by

inference techniques such as ARIMA models or autore-

gressive CNNs independently.



Fig. 9 – Final fuzzy sets and rule-base (FAM) configuration.
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The higher forecast capacity of hybrid models such as the

one proposed in this paper is related to intrinsic properties

associated with the types of models hybridised. On one

hand, the artificial neural networks have the capacity to

combine non-linear relationships between variables and

their topologies allow a parallel inter-relationship of input

variables. This provides to CNNs a great flexibility to repre-

sent several non-linear relationships at the same time,

which is very problematic for classic estimation techniques.

On second hand, the systems based on fuzzy logic rules

present a high error tolerance, behaving as conservative

systems. This is related with the capacity of these types of

systems to deal with continuous changes and generate small

or large control, which is determined by the simultaneous

execution of several rules whose influence degrees depend

on the input parameter strength in the fuzzy sets (Lee et al.,

2000).

An appropriate memory must be added to a multilayer feed

forward network so it be used in the time series forecasting as

consequence of its static architecture. The simplest form of

memory consists of a buffer that contains multiple copies of

the input data at various time delays (in this case, the water

demand in previous days) (De Vries and Principe, 1991). In the

problem analysed, despite the memory added to the CNNs by
means of a buffer containing recent inputs (the water

demands in the five previous days), the forecasts provided in

each day were systematically very close to the water demands

observed in the previous day. This circumstance is shown in

the PI values that were close to 0 and even negative for the

best univariate autoregressive CNNs proved. This is probably

due to the fact that the correlation between observed values in

any two consecutive time periods was most of the time very

high, and so, each time occurrence is highly responsible for

the next time realisation.

Authors as Park (1998), Abrahart and See (2000), Pulido-

Calvo et al. (2003a), Gutiérrez-Estrada et al. (2005), Pulido-Calvo

and Portela (2007), Gutiérrez-Estrada et al. (2007) and Pulido-

Calvo et al. (2007) also reported this lag-one difference

between actual values and values resulting from different

models applied to forecasting of different kinds of time vari-

ables. One way to decrease this systematic displacement is

providing additional or external variables to univariate

autoregressive models as was shown with the multivariate

CNN model with water demands and maximum temperatures

of two previous days as input data. With this multivariate

CNN model improvements were obtained in all the accuracy

measures in comparison with the univariate CNN model.

These improvements were significant for the PI value with an

increase of 30% in comparison with the rest of accuracy

measures (increases of 1% for R2 and E2 values and of 4% for

RMS and SEP values). However, with the hybrid methodology

developed in this paper higher improvements were obtained

(increases of 8% for R2, of 9% for E2, of 23% for RMS and SEP

values and of 71% for PI value).

Actually, the operational control of most irrigation water

distribution systems is based on averaged demand profiles for

certain time periods (10-day or weekly periods, normally),

which vary according to the development stage of the crop-

ping pattern and the climatic conditions, based on the expe-

rience and knowledge of the administrator. When there is

a significant difference between the demand profile assumed

and that which materialises as day progresses, it is necessary

to re-run the pump-scheduling software with the revised data.

This may imply that there are non-acceptable values of

pressure and flow during certain time periods of the system

operation which may affect network performance and even

crop yield. Consequently, the alternative is to develop an

approach similar to the one developed in this paper that

implies an adaptive demand-forecasting process which can be

updated daily. Also, this approach for the short-term opera-

tional control of the water distribution system is more

appropriate since the pump and valve settings need to be re-

optimised at short, regular intervals, in response to the highly

variable water demands.
5. Conclusions

The objective of this paper was to forecast consumer demands

of an irrigation area using on-farm water-use information and

a hybrid methodology combining CNNs, fuzzy logic and

genetic algorithms. In this model, a fuzzy inference system

was used to estimate the corrections of forecasts obtained

from a univariate autoregressive neural network and a genetic
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algorithm was used to find the optimal values of the param-

eters of the fuzzy system.

This hybrid model was applied to predict water demand

one-day ahead in the Fuente Palmera irrigation district,

southern Spain. The results indicated that the hybrid model

had much better statistics and error measures than those of

multivariate and univariate autoregressive neural networks

models.

In summary, this hybrid model proved to be a powerful tool

that, with not very large data requirements, can be very

suitable for the development of policies on irrigation water

consumption since information regarding water demand is

key to schedule pumping efforts and minimise operation costs

of water distribution systems as well as to evaluate the

marginal value of irrigation water and the response level to

different irrigation water rates.
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