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Abstract

Economic conditions over long time periods can be distinguished by regimes. Regime
identification has been object of numerous investigations in economics and financial modeling

for years.

Recently, new machine learning technics such as decision trees, support vector machines and
neural networks, among others, followed by alternative datasets and cheap computational
processing power became available, allowing for alternative ways to model complex economic

relationships.

In the present work, we develop a supervised machine learning classifier using Random Forest

technic to identify economic regimes using the S&P 500 stock market index series.

Key words: economic regimes, machine learning, random forest, Hidden Markov Model.
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Resumen

Las condiciones econdémicas durante largos periodos de tiempo pueden distinguirse por
regimenes. La identificacion del régimen ha sido objeto de numerosas investigaciones en

economia y modelos financieros durante afios.

Recientemente, se pusieron a disposicion nuevas técnicas de aprendizaje automatico, como
arboles de decision, maquinas de suporte vectorial y redes neuronales, entre otras, seguidas de
conjuntos de datos alternativos y una capacidad de procesamiento computacional barata, que

permite formas alternativas de modelar relaciones econdmicas complejas.

En el presente trabajo, desarrollamos un clasificador de aprendizaje automético supervisado
utilizando la técnica de Random Forest para identificar regimenes economicos utilizando la serie

del indices de mercado S&P 500.

Palabras clave: regimenes econdmicos, aprendizaje automatico, random forest, Cadenas de

Markov.
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1 Introduction

Economic conditions over long time periods can be distinguished by regimes. Regime
identification has been object of numerous investigations in economics and financial modeling

for years.

Conventional statistical and econometric technics have been used to model economic
fluctuations. Hamilton’s (1989) seminal work proposed the use of hidden Markov models
(HMM) to characterize business cycles in a probabilistic framework. This approach was
followed by a number of studies in areas as macroeconomic shifts, stock prices, foreign
exchange, interest rates, asset allocation and portfolio and risk management — see e.g. Sheikh et
al. (2012), Ang et al. (2011), Bulla (2011), Duprey et al. (2017), Guidolin et al. (2007), Nystrup
et al. (2015), Mulvey et al. (2014).

Recently, new machine learning technics such as decision trees, support vector machines and
neural networks, among others, followed by alternative datasets and cheap computational
processing power became available, allowing for alternative ways to model complex economic

relationships (Varian, 2014).

In the present work, we develop a supervised machine learning classifier using Random Forest
technic to identify economic regimes using the S&P 500 stock market index series. Regime
characterizations are derived in three ways: (a) two-state positive vs. negative returns, (b) two-
state positive vs. negative volatility trend and (c) three-state regime produced by the combination

of (a) and (b).

Distinct features are built using a number of terms — from two weeks to three years. The
produced models are selected using cross-validation tests, and detailed results are presented for

the best ones.

Lastly, we perform out-of-sample dynamic investment simulations using the produced models

contrasting it’s results to the HMM approach.



2 Random forest

2.1 Decision trees classifiers

Decision trees are algorithms that recursively segment the predictor space into several sub-
spaces, and then fit a simple model in each of the produced regions (Friedman et al., 2001). It
may be used as a supervised learning method both to regression, where outputs are real numbers,
and classification problems, where outputs are categorical. In the present study, we develop a

tree classifier, having regime labels, or economy states, as output.

Starting from the total predictor space, one predictor variable and one split-point in its domain is
selected to generate a binary partition. For each one of the resulting partitions, an impurity
measure is evaluated. This process is repeated for every split-point of every predictor variable.
The optimal decision of which partition to be made in which predictor variable is based on the
best results, i.e., the one that minimizes the weighted impurity mean of both produced regions.
This process then is recursively repeated at each partition until some stopping rule is applied.
This model can be represented by the binary tree at Figure 2.1, where splits of predictor variables

X, and X, produced regions R, to Rs.
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Figure 2.1. Three classes binary tree representation (right) of the predictor space (X1, X3) (left).



If the classification outcome takes the values k = 0,1,...,K — 1, for the region R,, with N,,

observations, we define the proportion of class k observations as:

1
puc =5 ), 100=h)

Xi € Rm

Then we classify the observations in R, as k(m) = arg maxy pmk, 1.€., the majority class in
this region. One first simple impurity metric may be the mean misclassification error, computed

as the proportion of observation that does not match the majority class k(m):

1
Misclassification errorg = T Z I(y; #k(m)) = 1 — pu(m)

i€Rm

Another impurity method is the cross-entropy, defined as:

Cross — entropy Rm = — z Pmk 108(Pmi)
Kk

Figure 2.2 compare both metrics as a function of the proportion of class “2” observations in a
two-class problem. Besides being differentiable, cross-entropy is more sensitive to changes in the
probabilities than the misclassification error (its derivate is bigger). Therefore, we use the cross-

entropy to fit the tree.
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Figure 2.2. Misclassification error and cross-entropy comparison for a two-class classification

example as a function of the proportion p in class “2” observations (adapted from Friedman et

al., 2001).



As a stopping rule for the tree growth we use tree size, i.e., its maximum depth. This parameter
determines the complexity of the model and must be tuned using out of sample data in order to
avoid overfitting (see Section 8). Mode details on other decision trees parameters may be found

at Friedman et al., 2001.

2.2 Random forests

Decision trees are a low bias and high variance estimator. The hierarchical nature of the process
makes top nodes splits errors propagate down to bottom nodes. One way to minimize this
problem and improve the prediction accuracy is to produce a set of different trees from different

training sets and averaging the results. This procedure is known as bootstrap aggregation, or

bagging.

In the Random Forest algorithm, bagged trees are produced and averaged. Furthermore, another
layer of randomness is added: at each split step for each bagged tree, only m < p predictors are
considered to compute the best split. This procedure de-correlates the trees, turning the averaged

prediction result less variable.

In the present work, we adopt the number of bootstrapped sets of one thousand (1, = 1000)
and the number of randomly selected predictors at each split of one (m = 1), meaning that we
average 1000 single trees, all of them grown with only one randomly selected variable at each
node split. This configuration permits a small correlation between pairs of trees, reducing the

likelihood of having similar trees, as they do not use the same set of splitting variables.

3 Data

In the context of efficient markets, financial asset prices instantly reflect agents economic
outlook. The S&P 500 is a stock market index based on the capitalization of 500 American large

companies, and widely followed by worldwide market participants.



It is the leading economic indicator with the best track record at identifying recessionary troughs
before they occur (Renshaw, 2002). We use S&P 500 daily index time series from August 1992
to August 2018 containing 5040 observations to build the model, and from August 2013 to
August 2018 to compare it with the HMM model (backtesting). Figure 3.1 shows the level and

daily return.
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Figure 3.1. S&P 500 level (top) and daily return (bottom) from 1992-08-08 to 2018-08-08. The
blue shade represents the period used to tune the model, while the red shade represents the

period used to backtest it.

4  Regime characterization

Three distinct economic regimes characterizations derived from the S&P 500 data will be used in
the Random Forest classifier. Each regime, also referred from now as state, outcomes or labels,
will be treated as categorical response variables in the context of the supervised learning

approach.



4.1 Two-state return regimes

In the two-state return regimes representation, the outcome is represented by (i) positive or (ii)

negative price returns. For each day t, it is computed over the future price information in a pre-

defined timespan T

Prices,r
utReturn,s = —————
f T Price,
" {S tate 1, if futReturn,r =0
r = .
et =) State 2, if futReturn,; <0

where Price, is the S&P 500 Index level at time t, futReturn, r is the price return between t

and t + T, and retL, r is the regime label at time t with timespan T. The timespan T is defined

in trading days from the periods of two weeks to one year, according to Table 4.1.

Timespan Symbol Trading days
two weeks ww 10
month M 21
quarter 0 63
semester S 126
year Y 252

Table 4.1. Timespan T from two weeks to one year, represented in trading days.

retL,r is computed daily. Figure 4.1 shows futReturn,r for every T with its respective

distribution. The shaded areas represent the State 2 label. Table 4.2 brings the basic statistics.
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Figure 4.1. Return outcomes futReturn,r (left, solid line) with respective histograms (right).

Shaded areas of the left-hand side plot represent the negative return labels of retL, r, while

white areas represent the positive return label.

Time span u - N. obs. N. obs.
State 1 State 2

ww 0.0030 0.0328 2948 (58%) 2092 (42%)

M 0.0062 0.0467 3135 (62%) 1905 (38%)

0 0.0188 0.0795 3304 (66%) 1736 (34%)

S 0.0384 0.1190 3525 (70%) 1515 (30%)

Y 0.0815 0.1812 3826 (76%) 1214 (24%)

Table 4.2. Return, r mean and standard deviation for each timespan T, and number of

observations of State 1 and State 2.



4.2 Two-state volatility trend regimes

In the two-state volatility trend regimes representation, the outcome is represented by (i) positive

or (i1) negative volatility trends. For each day t, it is computed over a pre-defined time span T

DailyStd
volTrend, ; = y L)
’ DallyStd{t_T‘t}
State 1, volTrend,r = 0

volTrendLr = { State 2,  wvolTrend,r <0

where DailyStdy; j, is the S&P 500 Index daily returns standard deviation between times i and j,
and volTrendL,r is the regime state at time t for the timespan T defined in Table 4.1.
volTrendL, is computed daily. Figure 4.2 shows volTrend,r for every T with its respective

distribution. The shaded areas represent the State 2 label. Table 4.3 brings the basic statistics.

Time span u o N. obs. N. obs.
State 1 State 2

ww 0.0842 0.4682 2473 (49%) 2567 (51%)

M 0.0681 0.4120 2466 (49%) 2574 (51%)

0 0.0708 0.4215 2405 (48%) 2635 (52%)

S 0.0783 0.4208 2292 (45%) 2748 (55%)

Y 0.0920 0.4262 2625 (52%) 2415 (48%)

Table 4.2. Return, y mean and standard deviation for each timespan T, and number of

observations of State 1 and State 2.
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Figure 4.2. Volatility trend outcomes volTrend, r (left, solid line) with respective histograms
(right). Shaded areas of the left-hand side plot represent the negative volatility trend labels of

volTrendL; r, while white areas represent the positive volatility trend label.

4.3 Three-state return and volatility trend regimes

In the three-state return and volatility trend regimes representation, the outcome is represented
by the combination of the previous characterizations: (i) negative return and positive volatility
trend; (i1) positive return and positive volatility trend, or negative return and negative volatility
trend; or (iil) positive return and negative volatility trend. For each day ¢, it is computed over a

pre-defined time span T
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State 1, futReturn,r < 0 and volTrend,r = 0

State 2, futReturn,r = 0 and volTrend,r = 0 or
futReturn,r < 0 and volTrend,r <0

State 3, futReturn,r = 0 and volTrend,r < 0

retVolL,r =

where retVolL, r is the regime state at time t with time span T. Figure 4.3 shows futReturn,r,
volTrend,r and retVolL,r for every T with its respective distribution, while Table 4.3 brings
the regime states frequencies.
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Figure 4.3. futReturn, rand volTrend, r are plotted (left, solid lines) with respective joint
frequency histogram (right). Red shaded areas of the left-hand side plot represent State 1, white

areas represent State 2, and blue shaded areas State 3.
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. N. obs. N. obs. N. obs.
Time span

State 1 State 2 State 3
ww 1279 (25%) 2007 (40%) 1754 (35%)
M 1207 (24%) 1957 (39%) 1876 (37%)
0 1192 (24%) 1757 (35%) 2091 (41%)
S 1095 (22%) 1617 (32%) 2328 (46%)
Y 1042 (21%) 1755 (35%) 2243 (45%)

Table 4.3. retVolL, r states frequencies for each timespan T.

5 Predictor variables

Once we have characterized the three outcomes retL,r, volTrendL,r and retVolL;r, now we
will define the predictor variables, also referred as features. Differently of the outcomes, which

are function of future information, the features are based only in past information.

5.1 Return feature

The return feature is computed based on the past price information over a pre-defined timespan
T. For each day t, it is computed as:
Ret Price; 1
eturngy = ———— —
T Price;_r

where Price; is the S&P 500 Index at time i. Differently from the timespans defined for the
outcomes, where it ranges from two weeks (WW) to one year (Y), the return feature has three
more periods added (one day, “D”, two years, “YY ”, and three years, “YYY ”), as shown in
Table 5.1.
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Timespan Symbol Trading days
day D |
two weeks ww 10
month M 21
quarter (0] 63
semester S 126
year Y 252
two years Yy 504
three years Yyy 756

Table 5.1. Timespan T from one day to three years, represented in trading days.

5.2 Volatility feature

The volatility feature is the past standard deviation over the timespan T, with T ranging from two

weeks (WW) to three years (YYY). For each day t, it is computed as:

Vol,r = Std{Price,_r, ..., Price.}

5.3 Price trend feature
The price trend feature is defined as the ratio between average prices in two different past

periods:

mean{Pricet_Tl, . Pricet} "

priceTrend,r, r, = - -
mean{Prlcet_Tl_Tz, e Prlcet_Tl}

with Ty and T, defined for (T, T,) = {T, > Ty | Ty, T, e {D,WW, M, Q,S,Y,YY,YYY}}, as shown
Table 5.2. Figure 5.1 illustrates the price trend feature for (Ty,T,) = {(D,M),(M,Y), (S,YYY)}.



TITZ ww M Q@ S Y YY YYY
D X X X X X X X
ww X X X X X X
M X X X X X
X X X X
S X X X
) 4 X X
YY X

Table 5.2. T; and T, for the priceTrendr, r,feature.
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Figure 5.1. priceTrend, r, r, for (T1,T,) = {(D,M),(M,Y), (S,YYY)} (left) and respective

SYYY

histograms (right).
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5.4 Volatility trend feature

For each day t, the volatility trend feature is defined by the ratio between daily returns standard

deviations in two different past periods:

Std{Pricet_Tl, . Pricet}

Std{Price,_r,_r,, ..., Price,_r,}

volTrend,r, r, =

with Ty and T, defined for (Ty,Ty) = {T, > Ty | Ty, T, € (WW, M, Q,S,Y,YY,YYY}}, as shown
Table 5.3. Figure 5.2 illustrates the volatility trend feature for (Ty,T,) =
{ww,s),(S,Y), (Y, YYY)}.

YYYY

N

19I93 1597 20IU1 20:.')5 2059 20‘13 -1 0 1
Figure 5.2. volTrend, r, r, for (T1,T;) = {(WW,S),(S,Y), (Y,YYY)} (left) and respective

histograms (right).
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I iy o s v w vy
ww | x X X X X X
X X X X X
X X X X
S X X X
Y X X
YY X

Table 5.3. T, and T, for the volTrend, r, r,feature.

6 Concurrent outcomes

In Section 4, we defined three distinct regime characterizations: retL;r, volTrendL,r and

retVolL, r. Each one of them is a function of the S&P 500 Index returns in some time interval.

Let’s assume y; as some label generated as function of prices over the interval [¢;,t; 1]. When
i <jand t;; < tjo, ¥; and y; will depend on common information. That is, the series
between any two outcomes (Prado, 2018). Figure 6.1 illustrates this mechanism for two

consecutive outcomes.

Prices - ‘t-tl ‘r-s‘t-z‘t-} ‘ t ‘HI ‘HZ‘HS"H:&‘HS‘...
i i
| |
| |
i i
Vi I i |
| |
Yisa : i+1 :
] ]
L J

T

Overlapping _ [t—2,t+3]

outcomes

Figure 6.1. Two consecutive outcomes with generated from concurrent price information.
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6.1 Concurrent outcomes and average uniqueness

When two outcomes are functions of the same price information p(t), they are said to be
concurrent at t (Prado, 2018). For a given label y;, i = 1,...,1, function of prices p(t) in the

interval [t; o, t; 1], we may compute the number of concurrent outcomes at each ¢ = 1,...,T by:

1
Cy = Z 1
i=1

where

" '_{1, if t € [ty ti]
N (1) if té& [tiotiil

Inversely, we may also compute the uniqueness of outcome i at each t as uy; = 1,;¢;*. And

finally, the average uniqueness of outcome i is the average u,; over the entire outcome lifespan,
_ T T -1
u’i = (Zt=1 ut,i) (Zt=1 1t,i) .

For each computed label in Section 4, we can calculate the mean average uniqueness (avgU) at

each term T. Table 6.1 has the results:

Term retl; volTrendL,r retVolLy
ww 0.0911 0.0478 0.0478
M 0.0456 0.0234 0.0234
() 0.0158 0.0081 0.0081
S 0.0081 0.0042 0.0042

Y 0.0042 0.0022 0.0022

Table 6.1. Average uniqueness (avgU) for each label and timespan T.
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Note that the longer the timespan, the smaller is the avgU. This result is expected, once more
outcomes share the same price information. This behavior is also observed between
retL,r and volTrendL,r along all terms, once the latter outcome covers a broader timespan

than the former.

avgU can be interpreted as the mean uniqueness of all outcomes y;, i = 1,...,1. E.g., retL, yy
has, in average, 9.11% of non-concurrent information. In other words, its outcomes along t share
90.89% of the information, in average. avgU = 1 indicates no overlapping information, while

avgU = 0 indicates perfect overlapping.

6.1.1 Random forests estimator with overlapping outcomes

As we saw in the last subsection, all the outcomes have a high rate of overlapping information. It
means that very similar information is going to feed the Random Forest estimator, producing

correlated individual begged trees and, by the end, a weak classifier.

Two precautions may be adopted to reduce this problem: (i) use a smaller number of
bootstrapped elements in each bagged tree, and (ii) use sample weights for the node split

computation. We will detail both approaches next.

6.1.2 Reduced bootstrap sets

As we saw in Section 2.2, the Random Forest is built as an average of single trees. Each single
tree is supplied with a bootstrapped (BT) set. Usually, in machine learning methods, each BT set
is constructed through random selection of N elements with replacement, where N is the total

number of elements available in the train data.

Nevertheless, once the labels have a high degree of common information, the BT set will also
inherit this feature. One way to reduce this effect is to select only a fraction of the total number

of elements at each BT set. This fraction could be the average uniqueness or a multiple of it.
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Figure 6.2 shows an example for the retL;y label, which has a mean average uniqueness of
0.42%. We generated three random BT sets from it using avgU multiples respectively of 10, 20
and 50. That means, the length of each set is multiple x 0.42% times the original number of
observations. As a result, we can compute the average uniqueness of each generated set and

compares it to the original one.

. 50
0.06 — 30
10
0.04 —
0.02 -
000 T T T T
000 005 010 015 020 025

Figure 6.2. Average uniqueness histograms of bootstrapped sets using multiples of 10, 20 and
50. The greater the multiple, the smaller the average uniqueness, and the greater the similarity to

the original set.

The greater the multiple, the greater the similarity to the original set. For multiple = 10, we
have mean(avgU,p) = 9.9%, or 23.9x the original one. For multiple = 30, we have
mean(avgUsq) = 3.3%, or 8.0x the original one. And lastly, for multiple = 50, we have

mean(avgUsy) = 2.0%, or 4.8x the original one.

6.1.3 Sample weights

We may make use of sample weights to emphasize low overlapping outcomes importance. As
we saw earlier, the node impurity is computed based its class probabilities (cross-entropy

impurity method). The sample weights are applied in the impurity computation. Using the
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average uniqueness of each observation as weight, we enforce more importance on “more

unique” samples.

Additionally, we may compose the sample weight with value attributions of the outcome. Le.,
high values of return and volatility trend (futReturn,r and volTrend,r, variables that
determine the labels) will have more importance in the nodes splits as well. Therefore, we define

the sample weights as (Prado, 2018):

Wi = |attribi| X Uu;

-1

where attrib; is futReturn,r, volTrend,r, or the product of both respectively for the labels
retLyr, volTrendL,r and retVolL, r. Figure 6.3 shows three histograms: average uniqueness,

return attribution and the weight, computed as the normalized |attrib;| X u; for the two-week

Two-state return outcome.
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Figure 6.3. Frequency of average uniqueness (top), return attribute (center) and the composed

sample weight (bottom).

/  Class weights

Imbalanced class distributions may cause biased and poor-quality estimators in classification
problems. Let’s exam retVolL;y as an example: State 3 has approximately half of the

observations, while State 1 and State 2 share the other half (see Table 4.3).

Although State 1 and State 2 may not be considered rare events, if we do not treat this
imbalance, we may have an estimator that favors the majority class in detriment of the overall

accuracy. As a solution we apply class weights to the fitting procedure.

For each bootstrapped training set, we evaluate the class composition of the outcome and build

weights that are inversely proportional to the relative presence of each class. As the sample
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weights presented in Section 6.1.3, the class weights are used to adjust the weights of each node
split. Actually, both weights (sample and class) are multiplied to compose the final load to the

node splitting computation.

8  Purged cross-validation

As we saw in Section 2.2, the Random Forest is built as an average of multiple decorrelated
single trees, each one of them supplied with bootstrapped data set. Usually each BT set is
constructed having the same length as the training set. In this configuration, on average, each
bagged tree uses approximately two-thirds of the training observations (Gareth et al. 2013).
Thus, the remaining one-third of the data are not used to fit the tree. We can call this the out-of-
bag observations (OOB), and it might be used to evaluate the model generalization power, once

the estimator “has not seen it”.

Nevertheless, this configuration of out-of-sample testing using OOB samples does not apply to
our case. As we have neighbor outcomes containing a high level of overlapping information, this
method would cause information leakage between the training and testing sets, causing non-
detectable model overfitting. Figure 8.1 illustrates this problem and the cause of information

leakage.
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Prices |O|1|2|3|4‘5|6|7|8|9|10| |0|1|2|3|4|5‘6|7|8‘9|10|
Yo —_—
»1 T — Bagged
V3 LI " _— training
‘ set

s ~_ ooB

P . testing
Yi-1 - ; set
Vi . | |

T

Leaked information

Figure 8.1. Label y; produced from price vector (left) is randomly bootstrapped to constitute the
training set (upper right). Out-of-bag (OOB) sample that forms the testing set shares information

with in-sample data (lower right), generating leakage and distorted generalization scores.

A second possible approach to measure the model generalization power and largely used by
standard machine learning works is the cross-validation. In this arrangement, the observations
are partitioned into k subsets and, for i = 1,...,k, the estimator is trained on all subsets
excluding i, and tested on i. This method produces k out of sample performance metrics, that are

averaged.

By the same reason mentioned before, k-fold cross-validation also does not avoid information
leakage, inducing to wrong model selection conclusions. In our case, this will always occur in
the neighbor observations located close to the train/test cross-validation partitions limits, once
they are going to share common price information. One possible solution is to use purged cross-

validation (Prado, 2018). Figure 8.2 illustrates this method.
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(a) k-fold

0 1000 2000 3000 4000 5000

{b) Purged k-fold

0 1000 2000 3000 4000 5000

(c) Purged k-fold with BT sets

R Y LA

0 1000 2000 3000 4000 5000

[ Training set [ Testing set W Purged observations [l Bootstraped training observations

Figure 8.2. (a) Training and testing sets for the cross-validation structure for k = 5. (b)
overlapping observations are excluded from the training sets, eliminating the information

leakage. (c) bootstrapped observations are selected from the training set.

Figure 8.2 (a) shows the training and testing sets for the cross-validation structure for k = 5. On
(b), overlapping observations are excluded from the training sets, eliminating the information
leakage to testing sets. Lastly, on (c), bootstrapped observations are selected from the training

set.

9  Parameter tuning and model evaluation

Using the previous configurations, we perform a grid search for the maximum tree depth
parameter in the interval between 1 and 100 for all the 15 regime characterization variables,

using the features defined in Section 5.

In the following subsections, we detail the quality metrics used to make this evaluation and

present the results.
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9.1 Models evaluation

In this section we describe the classification performances for the parameter tuning procedure for

all available predictors sets for each one of the outputs.

Figure 9.1 shows the accuracy for the 15 distinct models — retL,r, volTrendL,r and
retVolLyr, and T = {WW, M, Q, S, Y}. Each model has the same group of 64 predictor
variables (Return,r, Vol r, priceTrend,r, r,, volTrend,r, r,, respectively from Sections 5.1

to 5.4. Additionally, the horizontal axis contains the tree depth, from 1 to 100.

The top panel shows retL; r accuracy results for each term along the 1 to 100 tree depth. We can
note the accuracy tend to be better for longer terms, and the best result was found for the year

term, with accuracy of about 58% for three depth of 19.

The center panel shows volTrendL,r accuracy results. Differently from the retL,r models,
here the best accuracies are reached by the shorter terms. The two weeks term model presents the

best result of 63% for three depth of 5. This model has the best accuracy among all.

Finally, the bottom panel shows retVolL, r results. For this case, the model clearly cannot reach

a good level of accuracy.
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Figure 9.1. Accuracy for the 15 estimated models. Horizontal axis contains the maximum tree

depth from 1 to 100.

9.1.1  Models evaluations summary

Bellow we presents a summary of the above discussed results.

retL Reasonable capability to predict returns for longer terms as semester and
year. Best accuracy of 58% at a maximum tree depth of 19 for the year

period;
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volTrendL,r Good capability to predict volatility trends for shorter terms, Best accuracy

of 63% at a maximum tree depth of 5 for the two weeks period;

retVol,r Poor prediction quality for all terms.

10 Hidden Markov model

HHM is a stochastic process constituted of two parts: one undelaying Markov chain that
determines the unobservable (hidden) state, and one observable state-dependent process

(Zucchini et. al., 2006).

If the Markov chain {S;} has m states, then the bivariate stochastic process {(S;, X;)} is called an
m-state HMM. With X(® and S® representing the values from time 1 to time t, the simplest
HMM model can be summarized by (Nystrup, 2014):

P(S,| SEV) = P(S,| Se1), t = 2,3,...
P(X,| XD, 8®) = P(X,|S,), t €N
Let’s consider a simple two-state model with Gaussian conditional distributions:
Xe = ps, + &5, Xe = ps, + &5, ~ N(0,0%)
where

U 2{111; if Se=1 Uzz{af; if S¢=1 Fz[l—hz Y12
S¢ " \uy, if Sp= 2 5t " o2, if S, =2 Y 1—vyx
and I'(t) = {y;;(t)} is the transition probability matrix with y;;(t) = P(S¢y1 =j | S = i). We
illustrate this process in Figure 10.1, adapted from Zucchini et. al., 2006. More details on the

estimation procedures for this kind of model can be found at the same publication.
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Figure 10.1. [/lustration of a two-state HMM model with Gaussian conditional distributions. The

unobservable state (left), and the observable state-dependent process (right).

In the present work, we estimate HMM models using R depmixS4 package (Visser et. al, 2010).
Figures 10.2, 10.3 and 10.4 illustrate HMM models fitted to S&P 500 daily returns for the years
0f 2010, 2011 and 2012, using respectively 2, 3 and 4 states and Gaussian distributions.

For the two-state model, we can note that it is able to capture high and low volatility moments,
associated respectively with negative (-0.001) and positive (0.001) mean returns. The high
volatility state (State 2), has a standard deviation of 0.018, which is 2.25 higher than the
standard deviation of the low volatility state (State 1). Each state has a high stationarity, with
low regimes transition probabilities — 0,6% from State 1 to State 2, and 1,9% from State 2 to
State 1 —, indicating that states shifts tend to be very infrequent. The tables bring the estimated

parameters and the transition matrix (Figure 10.2).
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Figure 10.2. Two-state HMM model fitted in the S&P 500 daily returns for the years of 2010,
2011 and 2012. The blue shaded areas on the top plot represent State 1, while red areas
represent State 2. The histograms on the bottom were built with bootstrapped observations for
each respective state. The blue and red solid lines represent the respectively estimated gaussian

distributions.

Figure 10.3 shows the results for the three-state model. In this case, we also note that the model
can detect distinct volatility moments, with State 1 being the low volatility state and State 3
being the high volatility state. State 2, in this case, works as a transition state from State 1 to
State 3, although, by the other hand, State 3 has a direct path to State 1 (indeed, the only
existing path). The discrepancy between low and high volatility states standard deviation is
broader than the two-state model, of the order of 5 times, being clear the transition state absorbed

great part of the volatility of State 1.
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Figure 10.3. Three-state HMM model fitted in the S&P 500 daily returns for the years of 2010,
2011 and 2012. The blue shaded areas on the top plot represent State 1, green areas represent
State 2, and red areas represent State 3. The histograms on the bottom were built with
bootstrapped observations for each respective state. The blue, green and red solid lines

represent the respectively estimated gaussian distributions.

Figure 10.4 shows the fitted results for the four-state model. The low volatility state (State 1)
and high volatility state (State 4) have the same estimated parameters as the three-state case.

State 2 and State 3 may be regarded as transition states between State 1 and State 2.

Nevertheless, it is interesting to note that State 2 and State 3 oscillate a lot between each other
(see the first two panels). This behavior is based on the transition probabilities between both,

with 34.5% chances of transitioning from State 2 to State 3 and 94% from State 3 to State 2.
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As the former case as well, the only path to reach the high volatility state from the low volatility
one is through State 3. But the way back, differently from the three-state case, where it had a

direct path, in the present case it has to be also through State 3.
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Figure 10.4. Four-state HMM model fitted in the S&P 500 daily returns for the years of 2010,
2011 and 2012. The blue shaded areas on the top plot represent State 1, green areas represent
State 2, purple areas represent State 3, and red areas represent State 4. The histograms on
the bottom were built with bootstrapped observations for each respective state. The blue, green,

purple and red solid lines represent the respectively estimated gaussian distributions.

Finally, we can note that the high vs. low volatility states coincides with the negative vs. positive

return states respectively. Additionally, and very important, we note that these two regimes also
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coincide along the two, three and four states HMM models. l.e., the periods of both regimes

overlap independently of the number of states. This can be better seen in Figure 10.5.
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Figure 10.5. Two, three and four-state HMM model fitted in the S&P 500 daily returns for the
years of 2010, 2011 and 2012. High and low volatility states periods overlapping.

11 Out-of-sample model comparison

In this section we are going to execute dynamic investment strategy simulations based on the
three presented models using an OOS period, from Aug 2013 to Aug 2018. The investment
strategy may assume two distinct positions, depending on the market regimes predicted by the
respective model. If the market is identified as being in a low risk period, then the resources are

fully located to the risk asset (S&P 500). By the other hand, if the market is identified as being in
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a high-risk period, then the resources are fully located to the risk-free asset, in this case

represented by a 3% annual interest rate investment.
The simulations of both strategies are executed as follows:

1. HMM strategy: for each day t in the simulation period, the 2 state gaussian HMM model
is fitted to the last 2 years, including t. The estimated state for t (low volatility state or

high volatility state) determines the new investment position;

2. Random Forest retL; y: for each day t in the simulation period, the 2 state retL, y model

is fitted to the last 10 years. The estimated state for t (positive or negative return)

determines the new investment position; and

3. Random Forest volTrendL,ww: for each day t in the simulation period, the 2 state
volTrendL,ww model is fitted to the last 10 years. The estimated state for ¢ (positive or

negative volatility trend) determines the new investment position.

Note that the simulations are executed in the presence of transaction costs of 0.1% of the

portfolio value. Figure 11.1 presents the portfolios values trajectory of the investment strategies.
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Figure 11.1. Investment strategies simulation with out-of-sample data. Portfolio values for
HMM, RF Ret. Y and RF Vol. WW are shown with S&P and risk-free asset references (top), and

investment positions of each strategy (bottom,).

The Sharpe Ratios (SR) of each strategy, defined as the ratio between the average excess return
(i.e., excess in relation to the risk-free rate) and the returns standard deviation are presented in
Table 11.1. We can note that the RF' Ret. Y strategy has the best performance among the three
implemented, with a SR of 2.13. The HMM strategy presented a negative performance.
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Portfolio SR
Risk (S&P) 3.01
RF Ret. Y 2.13
RF Vol. WW 0.88
HMM -2.28

Table 11.1. Investment strategies Sharpe Ratios.

It is also interesting to note that none of the implemented portfolios had a better result than the
risky asset buy-and -hold strategy. Despite this is an indication that more investigation is needed
to understand the predictor variables determinants to the strategy movements, we have to have in
mind that this kind of simulation is biased, once it represents only one possible realization path

of the underlying stochastic process.

12 Conclusion

Economic regime identification has been object of numerous investigations in economics and

financial modeling using conventional statistical and econometric technics.

In the present work we developed a supervised machine learning classifier using Random Forest
technic to identify economic regimes using the S&P 500 stock market index series. The regimes
were derived in three ways: (a) two-state positive vs. negative returns, (b) two-state positive vs.

negative volatility trend and (c) three-state regime produced by the combination of (a) and (b).

We used sampling methods, among other techniques, to de-correlate bagging data sets and avoid
the use of highly serial correlated information. Models related to regimes characterized by future

price return and volatility trend had the best accuracy results.
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We contrasted this approach with the broadly studied Hidden Markov models by executing
dynamic investment strategies, showing that the tree-based models had better performance than

the HMM.
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