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Abstract 

Economic conditions over long time periods can be distinguished by regimes. Regime 

identification has been object of numerous investigations in economics and financial modeling 

for years.  

Recently, new machine learning technics such as decision trees, support vector machines and 

neural networks, among others, followed by alternative datasets and cheap computational 

processing power became available, allowing for alternative ways to model complex economic 

relationships. 

In the present work, we develop a supervised machine learning classifier using Random Forest 

technic to identify economic regimes using the S&P 500 stock market index series.  

Key words: economic regimes, machine learning, random forest, Hidden Markov Model. 
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Resumen 

Las condiciones económicas durante largos períodos de tiempo pueden distinguirse por 

regímenes. La identificación del régimen ha sido objeto de numerosas investigaciones en 

economía y modelos financieros durante años. 

Recientemente, se pusieron a disposición nuevas técnicas de aprendizaje automático, como 

árboles de decisión, máquinas de suporte vectorial y redes neuronales, entre otras, seguidas de 

conjuntos de datos alternativos y una capacidad de procesamiento computacional barata, que 

permite formas alternativas de modelar relaciones económicas complejas. 

En el presente trabajo, desarrollamos un clasificador de aprendizaje automático supervisado 

utilizando la técnica de Random Forest para identificar regímenes económicos utilizando la serie 

del índices de mercado S&P 500. 

Palabras clave: regímenes económicos, aprendizaje automático, random forest, Cadenas de 

Markov. 
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 Introduction 
Economic conditions over long time periods can be distinguished by regimes. Regime 

identification has been object of numerous investigations in economics and financial modeling 

for years.  

Conventional statistical and econometric technics have been used to model economic 

fluctuations. Hamilton’s (1989) seminal work proposed the use of hidden Markov models 

(HMM) to characterize business cycles in a probabilistic framework. This approach was 

followed by a number of studies in areas as macroeconomic shifts, stock prices, foreign 

exchange, interest rates, asset allocation and portfolio and risk management – see e.g. Sheikh et 

al. (2012), Ang et al. (2011), Bulla (2011), Duprey et al. (2017), Guidolin et al. (2007), Nystrup 

et al. (2015), Mulvey et al. (2014). 

Recently, new machine learning technics such as decision trees, support vector machines and 

neural networks, among others, followed by alternative datasets and cheap computational 

processing power became available, allowing for alternative ways to model complex economic 

relationships (Varian, 2014). 

In the present work, we develop a supervised machine learning classifier using Random Forest 

technic to identify economic regimes using the S&P 500 stock market index series. Regime 

characterizations are derived in three ways: (a) two-state positive vs. negative returns, (b) two-

state positive vs. negative volatility trend and (c) three-state regime produced by the combination 

of (a) and (b). 

Distinct features are built using a number of terms – from two weeks to three years. The 

produced models are selected using cross-validation tests, and detailed results are presented for 

the best ones. 

Lastly, we perform out-of-sample dynamic investment simulations using the produced models 

contrasting it’s results to the HMM approach. 
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 Random forest 

2.1 Decision trees classifiers 
Decision trees are algorithms that recursively segment the predictor space into several sub-

spaces, and then fit a simple model in each of the produced regions (Friedman et al., 2001). It 

may be used as a supervised learning method both to regression, where outputs are real numbers, 

and classification problems, where outputs are categorical. In the present study, we develop a 

tree classifier, having regime labels, or economy states, as output.  

Starting from the total predictor space, one predictor variable and one split-point in its domain is 

selected to generate a binary partition. For each one of the resulting partitions, an impurity 

measure is evaluated. This process is repeated for every split-point of every predictor variable. 

The optimal decision of which partition to be made in which predictor variable is based on the 

best results, i.e., the one that minimizes the weighted impurity mean of both produced regions. 

This process then is recursively repeated at each partition until some stopping rule is applied. 

This model can be represented by the binary tree at Figure 2.1, where splits of predictor variables 

𝑋1 and 𝑋2 produced regions 𝑅1 to 𝑅5. 

 

 
Figure 2.1. Three classes binary tree representation (right) of the predictor space (𝑋1, 𝑋2) (left). 
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If the classification outcome takes the values 𝑘 =  0, 1, . . . , 𝐾 − 1, for the region 𝑅𝑚 with 𝑁𝑚 

observations, we define the proportion of class 𝑘 observations as: 

𝑝𝑚𝑘 =
1
𝑁𝑚

 ∑ 𝐼(𝑦𝑖 = 𝑘)
𝑥𝑖 𝜖 𝑅𝑚

 

Then we classify the observations in 𝑅𝑚 as 𝑘(𝑚)  =  𝑎𝑟𝑔 𝑚𝑎𝑥𝑘 𝑝𝑚𝑘, i.e., the majority class in 

this region. One first simple impurity metric may be the mean misclassification error, computed 

as the proportion of observation that does not match the majority class 𝑘(𝑚): 

𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 𝑅𝑚 =
1
𝑁𝑚

 ∑ 𝐼(𝑦𝑖 ≠ 𝑘(𝑚))
𝑖 𝜖 𝑅𝑚

 =  1 −  𝑝𝑚𝑘(𝑚) 

Another impurity method is the cross-entropy, defined as: 

𝐶𝑟𝑜𝑠𝑠 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑅𝑚 = −∑𝑝𝑚𝑘 log(𝑝𝑚𝑘)
k

 

Figure 2.2 compare both metrics as a function of the proportion of class “2” observations in a 

two-class problem. Besides being differentiable, cross-entropy is more sensitive to changes in the 

probabilities than the misclassification error (its derivate is bigger). Therefore, we use the cross-

entropy to fit the tree. 

 

 
Figure 2.2. Misclassification error and cross-entropy comparison for a two-class classification 

example as a function of the proportion p in class “2” observations (adapted from Friedman et 

al., 2001). 
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As a stopping rule for the tree growth we use tree size, i.e., its maximum depth. This parameter 

determines the complexity of the model and must be tuned using out of sample data in order to 

avoid overfitting (see Section 8). Mode details on other decision trees parameters may be found 

at Friedman et al., 2001. 

 

2.2 Random forests 

Decision trees are a low bias and high variance estimator. The hierarchical nature of the process 

makes top nodes splits errors propagate down to bottom nodes. One way to minimize this 

problem and improve the prediction accuracy is to produce a set of different trees from different 

training sets and averaging the results. This procedure is known as bootstrap aggregation, or 

bagging. 

In the Random Forest algorithm, bagged trees are produced and averaged. Furthermore, another 

layer of randomness is added: at each split step for each bagged tree, only 𝑚 < 𝑝 predictors are 

considered to compute the best split. This procedure de-correlates the trees, turning the averaged 

prediction result less variable. 

In the present work, we adopt the number of bootstrapped sets of one thousand (𝑛𝑏𝑡 = 1000) 

and the number of randomly selected predictors at each split of one (𝑚 = 1), meaning that we 

average 1000 single trees, all of them grown with only one randomly selected variable at each 

node split. This configuration permits a small correlation between pairs of trees, reducing the 

likelihood of having similar trees, as they do not use the same set of splitting variables. 

 

 Data 
In the context of efficient markets, financial asset prices instantly reflect agents economic 

outlook. The S&P 500 is a stock market index based on the capitalization of 500 American large 

companies, and widely followed by worldwide market participants.  
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It is the leading economic indicator with the best track record at identifying recessionary troughs 

before they occur (Renshaw, 2002). We use S&P 500 daily index time series from August 1992 

to August 2018 containing 5040 observations to build the model, and from August 2013 to 

August 2018 to compare it with the HMM model (backtesting). Figure 3.1 shows the level and 

daily return. 

 

 
Figure 3.1. S&P 500 level (top) and daily return (bottom) from 1992-08-08 to 2018-08-08. The 

blue shade represents the period used to tune the model, while the red shade represents the 

period used to backtest it. 

 

 

 Regime characterization 
Three distinct economic regimes characterizations derived from the S&P 500 data will be used in 

the Random Forest classifier. Each regime, also referred from now as state, outcomes or labels, 

will be treated as categorical response variables in the context of the supervised learning 

approach. 
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4.1 Two-state return regimes 
In the two-state return regimes representation, the outcome is represented by (i) positive or (ii) 

negative price returns. For each day 𝑡, it is computed over the future price information in a pre-

defined timespan 𝑇: 

𝑓𝑢𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑡,𝑇 =
𝑃𝑟𝑖𝑐𝑒𝑡+𝑇
𝑃𝑟𝑖𝑐𝑒𝑡

− 1 

𝑟𝑒𝑡𝐿𝑡,𝑇 = {
 𝑆𝑡𝑎𝑡𝑒 1, 𝑖𝑓 𝑓𝑢𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑡,𝑇 ≥ 0
𝑆𝑡𝑎𝑡𝑒 2, 𝑖𝑓 𝑓𝑢𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑡,𝑇 < 0

 

where 𝑃𝑟𝑖𝑐𝑒𝑡 is the S&P 500 Index level at time 𝑡, 𝑓𝑢𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑡,𝑇 is the price return between 𝑡 

and 𝑡 + 𝑇, and 𝑟𝑒𝑡𝐿𝑡,𝑇 is the regime label at time 𝑡 with timespan 𝑇. The timespan 𝑇 is defined 

in trading days from the periods of two weeks to one year, according to Table 4.1.  

 

 

Timespan Symbol Trading days 

two weeks WW 10 

month M 21 

quarter Q 63 

semester S 126 

year Y 252 

Table 4.1. Timespan 𝑇 from two weeks to one year, represented in trading days. 

 

𝑟𝑒𝑡𝐿𝑡,𝑇 is computed daily. Figure 4.1 shows 𝑓𝑢𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑡,𝑇 for every 𝑇 with its respective 

distribution. The shaded areas represent the 𝑆𝑡𝑎𝑡𝑒 2 label. Table 4.2 brings the basic statistics. 
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Figure 4.1. Return outcomes 𝑓𝑢𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑡,𝑇 (left, solid line) with respective histograms (right). 

Shaded areas of the left-hand side plot represent the negative return labels of 𝑟𝑒𝑡𝐿𝑡,𝑇, while 

white areas represent the positive return label.  

 

 

Time span 𝝁 𝝈 
N. obs. 
𝑺𝒕𝒂𝒕𝒆 𝟏 

N. obs. 
𝑺𝒕𝒂𝒕𝒆 𝟐 

WW 0.0030 0.0328 2948 (58%) 2092 (42%) 

M 0.0062 0.0467 3135 (62%) 1905 (38%) 

Q 0.0188 0.0795 3304 (66%) 1736 (34%) 

S 0.0384 0.1190 3525 (70%) 1515 (30%) 

Y 0.0815 0.1812 3826 (76%) 1214 (24%) 

Table 4.2. 𝑅𝑒𝑡𝑢𝑟𝑛𝑡,𝑇 mean and standard deviation for each timespan 𝑇, and number of 

observations of 𝑆𝑡𝑎𝑡𝑒 1 and 𝑆𝑡𝑎𝑡𝑒 2. 
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4.2 Two-state volatility trend regimes 

In the two-state volatility trend regimes representation, the outcome is represented by (i) positive 

or (ii) negative volatility trends. For each day 𝑡, it is computed over a pre-defined time span 𝑇: 

𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝑡,𝑇 =
𝐷𝑎𝑖𝑙𝑦𝑆𝑡𝑑{𝑡+1,𝑡+𝑇}
𝐷𝑎𝑖𝑙𝑦𝑆𝑡𝑑{𝑡−𝑇,𝑡}

− 1 

𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝐿𝑡,𝑇 = {
 𝑆𝑡𝑎𝑡𝑒 1, 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝑡,𝑇 ≥ 0
𝑆𝑡𝑎𝑡𝑒 2, 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝑡,𝑇 < 0 

where 𝐷𝑎𝑖𝑙𝑦𝑆𝑡𝑑{𝑖,𝑗} is the S&P 500 Index daily returns standard deviation between times 𝑖 and 𝑗, 

and 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝐿𝑡,𝑇 is the regime state at time 𝑡 for the timespan 𝑇 defined in Table 4.1. 

𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝐿𝑡,𝑇 is computed daily. Figure 4.2 shows 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝑡,𝑇 for every 𝑇 with its respective 

distribution. The shaded areas represent the 𝑆𝑡𝑎𝑡𝑒 2 label. Table 4.3 brings the basic statistics. 

 

Time span 𝝁 𝝈 
N. obs. 
𝑺𝒕𝒂𝒕𝒆 𝟏 

N. obs. 
𝑺𝒕𝒂𝒕𝒆 𝟐 

WW 0.0842 0.4682 2473 (49%) 2567 (51%) 

M 0.0681 0.4120 2466 (49%) 2574 (51%) 

Q 0.0708 0.4215 2405 (48%) 2635 (52%) 

S 0.0783 0.4208 2292 (45%) 2748 (55%) 

Y 0.0920 0.4262 2625 (52%) 2415 (48%) 

Table 4.2. 𝑅𝑒𝑡𝑢𝑟𝑛𝑡,𝑇 mean and standard deviation for each timespan 𝑇, and number of 

observations of 𝑆𝑡𝑎𝑡𝑒 1 and 𝑆𝑡𝑎𝑡𝑒 2. 
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Figure 4.2. Volatility trend outcomes 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝑡,𝑇 (left, solid line) with respective histograms 

(right). Shaded areas of the left-hand side plot represent the negative volatility trend labels of 

𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝐿𝑡,𝑇, while white areas represent the positive volatility trend label.  

 

 

4.3 Three-state return and volatility trend regimes 
In the three-state return and volatility trend regimes representation, the outcome is represented 

by the combination of the previous characterizations: (i) negative return and positive volatility 

trend; (ii) positive return and positive volatility trend, or negative return and negative volatility 

trend; or (iii) positive return and negative volatility trend. For each day 𝑡, it is computed over a 

pre-defined time span 𝑇: 
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𝑟𝑒𝑡𝑉𝑜𝑙𝐿𝑡,𝑇 =

{
 

 
 𝑆𝑡𝑎𝑡𝑒 1, 𝑓𝑢𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑡,𝑇 < 0 𝑎𝑛𝑑 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝑡,𝑇 ≥ 0
𝑆𝑡𝑎𝑡𝑒 2, 𝑓𝑢𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑡,𝑇 ≥ 0 𝑎𝑛𝑑 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝑡,𝑇 ≥ 0 𝑜𝑟
                𝑓𝑢𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑡,𝑇 < 0 𝑎𝑛𝑑 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝑡,𝑇 < 0

𝑆𝑡𝑎𝑡𝑒 3, 𝑓𝑢𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑡,𝑇 ≥ 0 𝑎𝑛𝑑 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝑡,𝑇 < 0

 

where 𝑟𝑒𝑡𝑉𝑜𝑙𝐿𝑡,𝑇 is the regime state at time 𝑡 with time span 𝑇. Figure 4.3 shows 𝑓𝑢𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑡,𝑇, 
𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝑡,𝑇 and 𝑟𝑒𝑡𝑉𝑜𝑙𝐿𝑡,𝑇  for every 𝑇 with its respective distribution, while Table 4.3 brings 
the regime states frequencies. 

 

 
Figure 4.3. 𝑓𝑢𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑡,𝑇and 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝑡,𝑇 are plotted (left, solid lines) with respective joint 

frequency histogram (right). Red shaded areas of the left-hand side plot represent 𝑆𝑡𝑎𝑡𝑒 1, white 

areas represent 𝑆𝑡𝑎𝑡𝑒 2, and blue shaded areas 𝑆𝑡𝑎𝑡𝑒 3. 
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Time span 
N. obs. 
𝑺𝒕𝒂𝒕𝒆 𝟏 

N. obs. 
𝑺𝒕𝒂𝒕𝒆 𝟐 

N. obs. 
𝑺𝒕𝒂𝒕𝒆 𝟑 

WW 1279 (25%) 2007 (40%) 1754 (35%) 

M 1207 (24%) 1957 (39%) 1876 (37%) 

Q 1192 (24%) 1757 (35%) 2091 (41%) 

S 1095 (22%) 1617 (32%) 2328 (46%) 

Y 1042 (21%) 1755 (35%) 2243 (45%) 

Table 4.3. 𝑟𝑒𝑡𝑉𝑜𝑙𝐿𝑡,𝑇  states frequencies for each timespan 𝑇. 

 

 Predictor variables 
Once we have characterized the three outcomes 𝑟𝑒𝑡𝐿𝑡,𝑇, 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝐿𝑡,𝑇 and 𝑟𝑒𝑡𝑉𝑜𝑙𝐿𝑡,𝑇, now we 

will define the predictor variables, also referred as features. Differently of the outcomes, which 

are function of future information, the features are based only in past information. 

 

5.1 Return feature 
The return feature is computed based on the past price information over a pre-defined timespan 

𝑇. For each day 𝑡, it is computed as: 

𝑅𝑒𝑡𝑢𝑟𝑛𝑡,𝑇 =
𝑃𝑟𝑖𝑐𝑒𝑡
𝑃𝑟𝑖𝑐𝑒𝑡−𝑇

− 1 

where 𝑃𝑟𝑖𝑐𝑒𝑡 is the S&P 500 Index at time 𝑖. Differently from the timespans defined for the 

outcomes, where it ranges from two weeks (WW) to one year (Y), the return feature has three 

more periods added (one day, “D”, two years, “YY”, and three years, “YYY”), as shown in 

Table 5.1. 
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Timespan Symbol Trading days 

day D 1 

two weeks WW 10 

month M 21 

quarter Q 63 

semester S 126 

year Y 252 

two years YY 504 

three years YYY 756 

Table 5.1. Timespan 𝑇 from one day to three years, represented in trading days. 

 

5.2 Volatility feature 

The volatility feature is the past standard deviation over the timespan 𝑇, with 𝑇 ranging from two 

weeks (WW) to three years (YYY). For each day 𝑡, it is computed as: 

𝑉𝑜𝑙𝑡,𝑇 = 𝑆𝑡𝑑{𝑃𝑟𝑖𝑐𝑒𝑡−𝑇, … , 𝑃𝑟𝑖𝑐𝑒𝑡} 

 

5.3 Price trend feature 
The price trend feature is defined as the ratio between average prices in two different past 

periods: 

𝑝𝑟𝑖𝑐𝑒𝑇𝑟𝑒𝑛𝑑𝑡,𝑇1,𝑇2 =
𝑚𝑒𝑎𝑛{𝑃𝑟𝑖𝑐𝑒𝑡−𝑇1,… , 𝑃𝑟𝑖𝑐𝑒𝑡}

𝑚𝑒𝑎𝑛{𝑃𝑟𝑖𝑐𝑒𝑡−𝑇1−𝑇2,… , 𝑃𝑟𝑖𝑐𝑒𝑡−𝑇1}
− 1 

with 𝑇1 and 𝑇2 defined for (𝑇1, 𝑇2) = {𝑇2 > 𝑇1 | 𝑇1, 𝑇2 𝜖 {𝐷,𝑊𝑊,𝑀,𝑄, 𝑆, 𝑌, 𝑌𝑌, 𝑌𝑌𝑌}}, as shown 

Table 5.2. Figure 5.1 illustrates the price trend feature for (𝑇1, 𝑇2) = {(𝐷,𝑀), (𝑀, 𝑌), (𝑆, 𝑌𝑌𝑌)}. 

 



13 

 

T2 
T1 

WW M Q S Y YY YYY 

D x x x x x x x 

WW  x x x x x x 

M   x x x x x 

Q    x x x x 

S     x x x 

Y      x x 

YY       x 

Table 5.2. 𝑇1 and 𝑇2 for the 𝑝𝑟𝑖𝑐𝑒𝑇𝑟𝑒𝑛𝑑𝑡,𝑇1,𝑇2feature. 

 

 
Figure 5.1. 𝑝𝑟𝑖𝑐𝑒𝑇𝑟𝑒𝑛𝑑𝑡,𝑇1,𝑇2 for (𝑇1, 𝑇2) = {(𝐷,𝑀), (𝑀, 𝑌), (𝑆, 𝑌𝑌𝑌)} (left) and respective 

histograms (right). 
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5.4 Volatility trend feature 

For each day 𝑡, the volatility trend feature is defined by the ratio between daily returns standard 

deviations in two different past periods: 

𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝑡,𝑇1,𝑇2 =
𝑆𝑡𝑑{𝑃𝑟𝑖𝑐𝑒𝑡−𝑇1,… , 𝑃𝑟𝑖𝑐𝑒𝑡}

𝑆𝑡𝑑{𝑃𝑟𝑖𝑐𝑒𝑡−𝑇1−𝑇2,… , 𝑃𝑟𝑖𝑐𝑒𝑡−𝑇1}
− 1 

with 𝑇1 and 𝑇2 defined for (𝑇1, 𝑇2) = {𝑇2 > 𝑇1 | 𝑇1, 𝑇2 𝜖 {𝑊𝑊,𝑀,𝑄, 𝑆, 𝑌, 𝑌𝑌, 𝑌𝑌𝑌}}, as shown 

Table 5.3. Figure 5.2 illustrates the volatility trend feature for (𝑇1, 𝑇2) =

{(𝑊𝑊, 𝑆), (𝑆, 𝑌), (𝑌, 𝑌𝑌𝑌)}. 

 

 
Figure 5.2. 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝑡,𝑇1,𝑇2 for (𝑇1, 𝑇2) = {(𝑊𝑊, 𝑆), (𝑆, 𝑌), (𝑌, 𝑌𝑌𝑌)} (left) and respective 

histograms (right). 
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T2 
T1 

M Q S Y YY YYY 

WW x x x x x x 

M  x x x x x 

Q   x x x x 

S    x x x 

Y     x x 

YY      x 

Table 5.3. 𝑇1 and 𝑇2 for the 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝑡,𝑇1,𝑇2feature. 

 

 

 Concurrent outcomes 
In Section 4, we defined three distinct regime characterizations: 𝑟𝑒𝑡𝐿𝑡,𝑇, 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝐿𝑡,𝑇 and 

𝑟𝑒𝑡𝑉𝑜𝑙𝐿𝑡,𝑇. Each one of them is a function of the S&P 500 Index returns in some time interval. 

Let’s assume 𝑦𝑖 as some label generated as function of prices over the interval [𝑡𝑖,0, 𝑡𝑖,1]. When 

𝑖 <  𝑗 and 𝑡𝑖,1 <  𝑡𝑗,0, 𝑦𝑖 and 𝑦𝑗 will depend on common information. That is, the series 

{𝑦𝑖}𝑖 = 1,...,𝑁 is not independent and identically distributed (IID) whenever there is an overlap 

between any two outcomes (Prado, 2018). Figure 6.1 illustrates this mechanism for two 

consecutive outcomes. 

 

 
Figure 6.1. Two consecutive outcomes with generated from concurrent price information.  
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6.1 Concurrent outcomes and average uniqueness 

When two outcomes are functions of the same price information 𝑝(𝑡), they are said to be 

concurrent at 𝑡 (Prado, 2018). For a given label 𝑦𝑖, 𝑖 =  1, . . . , 𝐼, function of prices 𝑝(𝑡) in the 

interval [𝑡𝑖,0, 𝑡𝑖,1], we may compute the number of concurrent outcomes at each 𝑡 =  1, . . . , 𝑇 by: 

𝑐𝑡 =∑1𝑡,𝑖

𝐼

𝑖=1

 

where 

1𝑡,𝑖 = {
1, 𝑖𝑓    𝑡 ∈  [𝑡𝑖,0, 𝑡𝑖,1]
0, 𝑖𝑓    𝑡 ∉  [𝑡𝑖,0, 𝑡𝑖,1]

 

Inversely, we may also compute the uniqueness of outcome 𝑖 at each 𝑡 as 𝑢𝑡,𝑖 = 1𝑡,𝑖𝑐𝑡−1. And 

finally, the average uniqueness of outcome 𝑖 is the average 𝑢𝑡,𝑖 over the entire outcome lifespan, 

𝑢̅𝑖 = (∑ 𝑢𝑡,𝑖
𝑇
𝑡=1 ) (∑ 1𝑡,𝑖

𝑇
𝑡=1 )

−1
.  

For each computed label in Section 4, we can calculate the mean average uniqueness (𝑎𝑣𝑔𝑈) at 

each term 𝑇. Table 6.1 has the results: 

 

Term 𝒓𝒆𝒕𝑳𝒕,𝑻 𝒗𝒐𝒍𝑻𝒓𝒆𝒏𝒅𝑳𝒕,𝑻 𝒓𝒆𝒕𝑽𝒐𝒍𝑳𝒕,𝑻 

WW 0.0911 0.0478 0.0478 

M 0.0456 0.0234 0.0234 

Q 0.0158 0.0081 0.0081 

S 0.0081 0.0042 0.0042 

Y 0.0042 0.0022 0.0022 

Table 6.1. Average uniqueness (𝑎𝑣𝑔𝑈) for each label and timespan 𝑇.  
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Note that the longer the timespan, the smaller is the 𝑎𝑣𝑔𝑈. This result is expected, once more 

outcomes share the same price information. This behavior is also observed between  

𝑟𝑒𝑡𝐿𝑡,𝑇 and 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝐿𝑡,𝑇 along all terms, once the latter outcome covers a broader timespan 

than the former. 

𝑎𝑣𝑔𝑈 can be interpreted as the mean uniqueness of all outcomes 𝑦𝑖, 𝑖 =  1, . . . , 𝐼. E.g., 𝑟𝑒𝑡𝐿𝑡,𝑊𝑊 

has, in average, 9.11% of non-concurrent information. In other words, its outcomes along 𝑡 share 

90.89% of the information, in average. 𝑎𝑣𝑔𝑈 = 1 indicates no overlapping information, while 

𝑎𝑣𝑔𝑈 = 0 indicates perfect overlapping. 

 

6.1.1 Random forests estimator with overlapping outcomes 

As we saw in the last subsection, all the outcomes have a high rate of overlapping information. It 

means that very similar information is going to feed the Random Forest estimator, producing 

correlated individual begged trees and, by the end, a weak classifier. 

Two precautions may be adopted to reduce this problem: (i) use a smaller number of 

bootstrapped elements in each bagged tree, and (ii) use sample weights for the node split 

computation. We will detail both approaches next. 

 

6.1.2 Reduced bootstrap sets 

As we saw in Section 2.2, the Random Forest is built as an average of single trees. Each single 

tree is supplied with a bootstrapped (BT) set. Usually, in machine learning methods, each BT set 

is constructed through random selection of N elements with replacement, where N is the total 

number of elements available in the train data. 

Nevertheless, once the labels have a high degree of common information, the BT set will also 

inherit this feature. One way to reduce this effect is to select only a fraction of the total number 

of elements at each BT set. This fraction could be the average uniqueness or a multiple of it. 
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Figure 6.2 shows an example for the 𝑟𝑒𝑡𝐿𝑡,Y label, which has a mean average uniqueness of 

0.42%. We generated three random BT sets from it using 𝑎𝑣𝑔𝑈 multiples respectively of 10, 20 

and 50. That means, the length of each set is 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 x 0.42% times the original number of 

observations. As a result, we can compute the average uniqueness of each generated set and 

compares it to the original one.  

 

 
Figure 6.2. Average uniqueness histograms of bootstrapped sets using multiples of 10, 20 and 

50. The greater the multiple, the smaller the average uniqueness, and the greater the similarity to 

the original set. 

 

The greater the multiple, the greater the similarity to the original set. For 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 = 10, we 

have 𝑚𝑒𝑎𝑛(𝑎𝑣𝑔𝑈10) =  9.9%, or 23.9x the original one. For 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 = 30, we have 

𝑚𝑒𝑎𝑛(𝑎𝑣𝑔𝑈30) =  3.3%, or 8.0x the original one. And lastly, for 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 = 50, we have 

𝑚𝑒𝑎𝑛(𝑎𝑣𝑔𝑈50) =  2.0%, or 4.8x the original one.  

 

6.1.3 Sample weights 

We may make use of sample weights to emphasize low overlapping outcomes importance. As 

we saw earlier, the node impurity is computed based its class probabilities (cross-entropy 

impurity method). The sample weights are applied in the impurity computation. Using the 



19 

 

average uniqueness of each observation as weight, we enforce more importance on “more 

unique” samples. 

Additionally, we may compose the sample weight with value attributions of the outcome. I.e., 

high values of return and volatility trend (𝑓𝑢𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑡,𝑇 and 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝑡,𝑇, variables that 

determine the labels) will have more importance in the nodes splits as well. Therefore, we define 

the sample weights as (Prado, 2018): 

𝑤̃𝑖 = |𝑎𝑡𝑡𝑟𝑖𝑏𝑖| × 𝑢𝑖 

𝑤𝑖 = 𝑤̃𝑖𝐼 (∑𝑤̃𝑖

𝐼

𝑗=1

)

−1

 

where 𝑎𝑡𝑡𝑟𝑖𝑏𝑖 is 𝑓𝑢𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝑡,𝑇, 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝑡,𝑇, or the product of both respectively for the labels 

𝑟𝑒𝑡𝐿𝑡,𝑇, 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝐿𝑡,𝑇 and 𝑟𝑒𝑡𝑉𝑜𝑙𝐿𝑡,𝑇. Figure 6.3 shows three histograms: average uniqueness, 

return attribution and the weight, computed as the normalized |𝑎𝑡𝑡𝑟𝑖𝑏𝑖| × 𝑢𝑖 for the two-week 

Two-state return outcome. 

 



20 

 

 
Figure 6.3. Frequency of average uniqueness (top), return attribute (center) and the composed 

sample weight (bottom). 

 

 Class weights 
Imbalanced class distributions may cause biased and poor-quality estimators in classification 

problems. Let’s exam 𝑟𝑒𝑡𝑉𝑜𝑙𝐿𝑡,𝑌 as an example: 𝑆𝑡𝑎𝑡𝑒 3 has approximately half of the 

observations, while 𝑆𝑡𝑎𝑡𝑒 1 and 𝑆𝑡𝑎𝑡𝑒 2 share the other half (see Table 4.3). 

Although 𝑆𝑡𝑎𝑡𝑒 1 and 𝑆𝑡𝑎𝑡𝑒 2 may not be considered rare events, if we do not treat this 

imbalance, we may have an estimator that favors the majority class in detriment of the overall 

accuracy. As a solution we apply class weights to the fitting procedure.  

For each bootstrapped training set, we evaluate the class composition of the outcome and build 

weights that are inversely proportional to the relative presence of each class. As the sample 
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weights presented in Section 6.1.3, the class weights are used to adjust the weights of each node 

split. Actually, both weights (sample and class) are multiplied to compose the final load to the 

node splitting computation.  

 

 Purged cross-validation 
As we saw in Section 2.2, the Random Forest is built as an average of multiple decorrelated 

single trees, each one of them supplied with bootstrapped data set. Usually each BT set is 

constructed having the same length as the training set. In this configuration, on average, each 

bagged tree uses approximately two-thirds of the training observations (Gareth et al. 2013). 

Thus, the remaining one-third of the data are not used to fit the tree. We can call this the out-of-

bag observations (OOB), and it might be used to evaluate the model generalization power, once 

the estimator “has not seen it”. 

Nevertheless, this configuration of out-of-sample testing using OOB samples does not apply to 

our case. As we have neighbor outcomes containing a high level of overlapping information, this 

method would cause information leakage between the training and testing sets, causing non-

detectable model overfitting. Figure 8.1 illustrates this problem and the cause of information 

leakage. 
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Figure 8.1. Label 𝑦𝑡 produced from price vector (left) is randomly bootstrapped to constitute the 

training set (upper right). Out-of-bag (OOB) sample that forms the testing set shares information 

with in-sample data (lower right), generating leakage and distorted generalization scores. 

 

A second possible approach to measure the model generalization power and largely used by 

standard machine learning works is the cross-validation. In this arrangement, the observations 

are partitioned into 𝑘 subsets and, for 𝑖 =  1, . . . , 𝑘, the estimator is trained on all subsets 

excluding 𝑖, and tested on 𝑖. This method produces 𝑘 out of sample performance metrics, that are 

averaged. 

By the same reason mentioned before, 𝑘-fold cross-validation also does not avoid information 

leakage, inducing to wrong model selection conclusions. In our case, this will always occur in 

the neighbor observations located close to the train/test cross-validation partitions limits, once 

they are going to share common price information. One possible solution is to use purged cross-

validation (Prado, 2018). Figure 8.2 illustrates this method. 
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Figure 8.2. (a) Training and testing sets for the cross-validation structure for 𝑘 = 5. (b) 

overlapping observations are excluded from the training sets, eliminating the information 

leakage. (c) bootstrapped observations are selected from the training set. 

 

Figure 8.2 (a) shows the training and testing sets for the cross-validation structure for 𝑘 = 5. On 

(b), overlapping observations are excluded from the training sets, eliminating the information 

leakage to testing sets. Lastly, on (c), bootstrapped observations are selected from the training 

set. 

 

 Parameter tuning and model evaluation 
Using the previous configurations, we perform a grid search for the maximum tree depth 

parameter in the interval between 1 and 100 for all the 15 regime characterization variables, 

using the features defined in Section 5. 

In the following subsections, we detail the quality metrics used to make this evaluation and 

present the results. 
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9.1 Models evaluation 

In this section we describe the classification performances for the parameter tuning procedure for 

all available predictors sets for each one of the outputs. 

Figure 9.1 shows the accuracy for the 15 distinct models – 𝑟𝑒𝑡𝐿𝑡,𝑇, 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝐿𝑡,𝑇 and 

𝑟𝑒𝑡𝑉𝑜𝑙𝐿𝑡,𝑇, and 𝑇 =  {𝑊𝑊, 𝑀, 𝑄, 𝑆, 𝑌}. Each model has the same group of 64 predictor 

variables (𝑅𝑒𝑡𝑢𝑟𝑛𝑡,𝑇, 𝑉𝑜𝑙𝑡,𝑇,  𝑝𝑟𝑖𝑐𝑒𝑇𝑟𝑒𝑛𝑑𝑡,𝑇1,𝑇2, 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝑡,𝑇1,𝑇2, respectively from Sections 5.1 

to 5.4. Additionally, the horizontal axis contains the tree depth, from 1 to 100. 

The top panel shows 𝑟𝑒𝑡𝐿𝑡,𝑇 accuracy results for each term along the 1 to 100 tree depth. We can 

note the accuracy tend to be better for longer terms, and the best result was found for the year 

term, with accuracy of about 58% for three depth of 19. 

The center panel shows 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝐿𝑡,𝑇 accuracy results. Differently from the 𝑟𝑒𝑡𝐿𝑡,𝑇 models, 

here the best accuracies are reached by the shorter terms. The two weeks term model presents the 

best result of 63% for three depth of 5. This model has the best accuracy among all. 

Finally, the bottom panel shows 𝑟𝑒𝑡𝑉𝑜𝑙𝐿𝑡,𝑇 results. For this case, the model clearly cannot reach 

a good level of accuracy.  
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Figure 9.1. Accuracy for the 15 estimated models. Horizontal axis contains the maximum tree 

depth from 1 to 100. 

 

9.1.1 Models evaluations summary 

Bellow we presents a summary of the above discussed results. 

 

𝑟𝑒𝑡𝐿𝑡,𝑇  Reasonable capability to predict returns for longer terms as semester and 

year. Best accuracy of 58% at a maximum tree depth of 19 for the year 

period; 
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𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝐿𝑡,𝑇 Good capability to predict volatility trends for shorter terms, Best accuracy 

of 63% at a maximum tree depth of 5 for the two weeks period; 

𝑟𝑒𝑡𝑉𝑜𝑙𝑡,𝑇  Poor prediction quality for all terms. 

 

 

 Hidden Markov model 
HHM is a stochastic process constituted of two parts: one undelaying Markov chain that 

determines the unobservable (hidden) state, and one observable state-dependent process 

(Zucchini et. al., 2006). 

If the Markov chain {𝑆𝑡} has 𝑚 states, then the bivariate stochastic process {(𝑆𝑡, 𝑋𝑡)} is called an 

𝑚-state HMM. With 𝑋(𝑡) and 𝑆(𝑡) representing the values from time 1 to time t, the simplest 

HMM model can be summarized by (Nystrup, 2014): 

P(𝑆𝑡| 𝑆(𝑡−1))  =  P(𝑆𝑡| 𝑆𝑡−1),      𝑡 =  2, 3, . .. 

P(𝑋𝑡| 𝑋(𝑡−1), 𝑆(𝑡))  =  P(𝑋𝑡| 𝑆𝑡),     𝑡 ∈  ℕ 

Let’s consider a simple two-state model with Gaussian conditional distributions: 

X𝑡 =  𝜇𝑆𝑡 + 𝜀𝑆𝑡 ,      X𝑡 =  𝜇𝑆𝑡 + 𝜀𝑆𝑡  ∼  𝑁(0, 𝜎𝑆𝑡
2 ) 

where  

𝜇𝑆𝑡 = {𝜇1, 𝑖𝑓   𝑆𝑡 =  1
𝜇2, 𝑖𝑓   𝑆𝑡 =  2         𝜎𝑆𝑡

2 = {𝜎1
2, 𝑖𝑓   𝑆𝑡 =  1
𝜎22, 𝑖𝑓   𝑆𝑡 =  2

       Γ = [1 − 𝛾12 𝛾12
𝛾21 1 − 𝛾21

] 

and Γ(𝑡)  =  {𝛾𝑖𝑗(𝑡)} is the transition probability matrix with 𝛾𝑖𝑗(𝑡)  = 𝑃(𝑆𝑡+1 = 𝑗 | 𝑆𝑡 = 𝑖). We 

illustrate this process in Figure 10.1, adapted from Zucchini et. al., 2006. More details on the 

estimation procedures for this kind of model can be found at the same publication. 
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Figure 10.1. Illustration of a two-state HMM model with Gaussian conditional distributions. The 

unobservable state (left), and the observable state-dependent process (right). 

 

In the present work, we estimate HMM models using R depmixS4 package (Visser et. al, 2010). 

Figures 10.2, 10.3 and 10.4 illustrate HMM models fitted to S&P 500 daily returns for the years 

of 2010, 2011 and 2012, using respectively 2, 3 and 4 states and Gaussian distributions. 

For the two-state model, we can note that it is able to capture high and low volatility moments, 

associated respectively with negative (-0.001) and positive (0.001) mean returns. The high 

volatility state (𝑆𝑡𝑎𝑡𝑒 2), has a standard deviation of 0.018, which is 2.25 higher than the 

standard deviation of the low volatility state (𝑆𝑡𝑎𝑡𝑒 1). Each state has a high stationarity, with 

low regimes transition probabilities – 0,6% from 𝑆𝑡𝑎𝑡𝑒 1 to 𝑆𝑡𝑎𝑡𝑒 2, and 1,9% from 𝑆𝑡𝑎𝑡𝑒 2 to 

𝑆𝑡𝑎𝑡𝑒 1 –, indicating that states shifts tend to be very infrequent. The tables bring the estimated 

parameters and the transition matrix (Figure 10.2). 
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Figure 10.2. Two-state HMM model fitted in the S&P 500 daily returns for the years of 2010, 

2011 and 2012. The blue shaded areas on the top plot represent 𝑆𝑡𝑎𝑡𝑒 1, while red areas 

represent 𝑆𝑡𝑎𝑡𝑒 2. The histograms on the bottom were built with bootstrapped observations for 

each respective state. The blue and red solid lines represent the respectively estimated gaussian 

distributions. 

 

Figure 10.3 shows the results for the three-state model. In this case, we also note that the model 

can detect distinct volatility moments, with 𝑆𝑡𝑎𝑡𝑒 1 being the low volatility state and 𝑆𝑡𝑎𝑡𝑒 3 

being the high volatility state. 𝑆𝑡𝑎𝑡𝑒 2, in this case, works as a transition state from 𝑆𝑡𝑎𝑡𝑒 1 to 

𝑆𝑡𝑎𝑡𝑒 3, although, by the other hand, 𝑆𝑡𝑎𝑡𝑒 3 has a direct path to 𝑆𝑡𝑎𝑡𝑒 1 (indeed, the only 

existing path). The discrepancy between low and high volatility states standard deviation is 

broader than the two-state model, of the order of 5 times, being clear the transition state absorbed 

great part of the volatility of 𝑆𝑡𝑎𝑡𝑒 1. 
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Figure 10.3. Three-state HMM model fitted in the S&P 500 daily returns for the years of 2010, 

2011 and 2012. The blue shaded areas on the top plot represent 𝑆𝑡𝑎𝑡𝑒 1, green areas represent 

𝑆𝑡𝑎𝑡𝑒 2, and red areas represent 𝑆𝑡𝑎𝑡𝑒 3. The histograms on the bottom were built with 

bootstrapped observations for each respective state. The blue, green and red solid lines 

represent the respectively estimated gaussian distributions. 

 

Figure 10.4 shows the fitted results for the four-state model. The low volatility state (𝑆𝑡𝑎𝑡𝑒 1) 

and high volatility state (𝑆𝑡𝑎𝑡𝑒 4) have the same estimated parameters as the three-state case. 

𝑆𝑡𝑎𝑡𝑒 2 and 𝑆𝑡𝑎𝑡𝑒 3 may be regarded as transition states between 𝑆𝑡𝑎𝑡𝑒 1 and 𝑆𝑡𝑎𝑡𝑒 2. 

Nevertheless, it is interesting to note that 𝑆𝑡𝑎𝑡𝑒 2 and 𝑆𝑡𝑎𝑡𝑒 3 oscillate a lot between each other 

(see the first two panels). This behavior is based on the transition probabilities between both, 

with 34.5% chances of transitioning from 𝑆𝑡𝑎𝑡𝑒 2 to 𝑆𝑡𝑎𝑡𝑒 3 and 94% from 𝑆𝑡𝑎𝑡𝑒 3 to 𝑆𝑡𝑎𝑡𝑒 2. 
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As the former case as well, the only path to reach the high volatility state from the low volatility 

one is through 𝑆𝑡𝑎𝑡𝑒 3. But the way back, differently from the three-state case, where it had a 

direct path, in the present case it has to be also through 𝑆𝑡𝑎𝑡𝑒 3. 

 

 
Figure 10.4. Four-state HMM model fitted in the S&P 500 daily returns for the years of 2010, 

2011 and 2012. The blue shaded areas on the top plot represent 𝑆𝑡𝑎𝑡𝑒 1, green areas represent 

𝑆𝑡𝑎𝑡𝑒 2, purple areas represent 𝑆𝑡𝑎𝑡𝑒 3, and red areas represent 𝑆𝑡𝑎𝑡𝑒 4. The histograms on 

the bottom were built with bootstrapped observations for each respective state. The blue, green, 

purple and red solid lines represent the respectively estimated gaussian distributions. 

 

Finally, we can note that the high vs. low volatility states coincides with the negative vs. positive 

return states respectively. Additionally, and very important, we note that these two regimes also 
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coincide along the two, three and four states HMM models. I.e., the periods of both regimes 

overlap independently of the number of states. This can be better seen in Figure 10.5. 

 

 
Figure 10.5. Two, three and four-state HMM model fitted in the S&P 500 daily returns for the 

years of 2010, 2011 and 2012. High and low volatility states periods overlapping. 

 

 

 Out-of-sample model comparison 
In this section we are going to execute dynamic investment strategy simulations based on the 

three presented models using an OOS period, from Aug 2013 to Aug 2018. The investment 

strategy may assume two distinct positions, depending on the market regimes predicted by the 

respective model. If the market is identified as being in a low risk period, then the resources are 

fully located to the risk asset (S&P 500). By the other hand, if the market is identified as being in 
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a high-risk period, then the resources are fully located to the risk-free asset, in this case 

represented by a 3% annual interest rate investment. 

The simulations of both strategies are executed as follows: 

1. HMM strategy: for each day 𝑡 in the simulation period, the 2 state gaussian HMM model 

is fitted to the last 2 years, including 𝑡. The estimated state for 𝑡 (low volatility state or 

high volatility state) determines the new investment position; 

2. Random Forest 𝑟𝑒𝑡𝐿𝑡,Y: for each day 𝑡 in the simulation period, the 2 state 𝑟𝑒𝑡𝐿𝑡,Y model 

is fitted to the last 10 years. The estimated state for 𝑡 (positive or negative return) 

determines the new investment position; and 

3. Random Forest 𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝐿𝑡,WW: for each day 𝑡 in the simulation period, the 2 state 

𝑣𝑜𝑙𝑇𝑟𝑒𝑛𝑑𝐿𝑡,WW model is fitted to the last 10 years. The estimated state for 𝑡 (positive or 

negative volatility trend) determines the new investment position. 

Note that the simulations are executed in the presence of transaction costs of 0.1% of the 

portfolio value. Figure 11.1 presents the portfolios values trajectory of the investment strategies. 
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Figure 11.1. Investment strategies simulation with out-of-sample data. Portfolio values for 

HMM, RF Ret. Y and RF Vol. WW are shown with S&P and risk-free asset references (top), and 

investment positions of each strategy (bottom). 

 

The Sharpe Ratios (SR) of each strategy, defined as the ratio between the average excess return 

(i.e., excess in relation to the risk-free rate) and the returns standard deviation are presented in 

Table 11.1. We can note that the RF Ret. Y strategy has the best performance among the three 

implemented, with a SR of 2.13. The HMM strategy presented a negative performance. 
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Portfolio SR 

Risk (S&P) 3.01 

RF Ret. Y 2.13 

RF Vol. WW 0.88 

HMM -2.28 

Table 11.1. Investment strategies Sharpe Ratios.  

 

It is also interesting to note that none of the implemented portfolios had a better result than the 

risky asset buy-and -hold strategy. Despite this is an indication that more investigation is needed 

to understand the predictor variables determinants to the strategy movements, we have to have in 

mind that this kind of simulation is biased, once it represents only one possible realization path 

of the underlying stochastic process.  

 

 

 Conclusion  
Economic regime identification has been object of numerous investigations in economics and 

financial modeling using conventional statistical and econometric technics. 

In the present work we developed a supervised machine learning classifier using Random Forest 

technic to identify economic regimes using the S&P 500 stock market index series. The regimes 

were derived in three ways: (a) two-state positive vs. negative returns, (b) two-state positive vs. 

negative volatility trend and (c) three-state regime produced by the combination of (a) and (b). 

We used sampling methods, among other techniques, to de-correlate bagging data sets and avoid 

the use of highly serial correlated information. Models related to regimes characterized by future 

price return and volatility trend had the best accuracy results. 
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We contrasted this approach with the broadly studied Hidden Markov models by executing 

dynamic investment strategies, showing that the tree-based models had better performance than 

the HMM. 
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