
TEMA III: ELEMENTOS DE MEMORIA

- ELEMENTO DE MEMORIA: ELEMENTO CAPAZ DE ALMACENAR UN ESTADO DURANTE UN TIEMPO DETERMINADO.
- PROPIEDAD DE **TRANSPARENCIA:** DEPENDENCIA DE LOS CAMBIOS DE LA SEÑAL DE SALIDA RESPECTO A LOS CAMBIOS DE LA SEÑAL QUE SE QUIERE ALMACENAR.
 - ⇒ ELEMENTOS DE MEMORIA TRANSPARENTES

ELEMENTOS DE MEMORIA NO TRANSPARENTES Señal de entrada Señal de control C Señal de salida Fase de transparencia Señal de entrada Señal de control C Señal de salida **DIESIA**

ESTUDIO DE BIESTABLES TRANSPARENTES

$$Z_1 = \overline{R + Z_2}$$

$$Z_2 = \overline{S + Z_1}$$

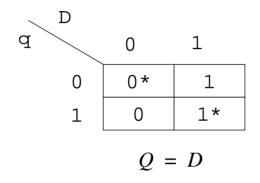
R S

$$Z_1 Z_2$$
 00 01 11 10

00	01	11	10
11	10	00*	01
01*	00	00	01*
00	00	00	00
10*	10*	00	00

 $Z_1 Z_2$

$$\checkmark$$
 R = 1 ---> RESET

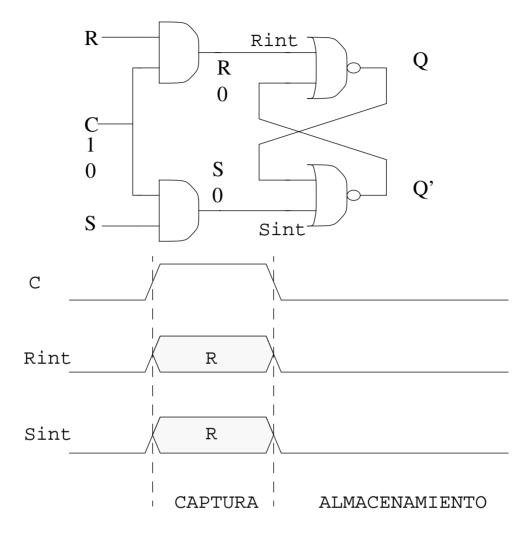

$$\checkmark$$
 S = 1 ---> SET

- ✓ COMBINACIÓN RS = 11 PROHIBIDA
- ✓ BIESTABLE RS

R S

00 01 11 10 0 0* 1 0* q 1* 1* 1 0 Q

PRINCIPALES TIPOS DE BIESTABLES

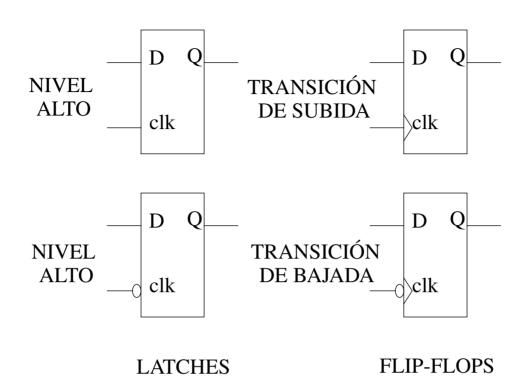

	Т			
ď		0	1	
	0	0*	1	
	1	1*	0	
		$Q = T \oplus q$		

d lk	00	01	11	10
0	0*	0*	1	1
1	1*	0	0	1*

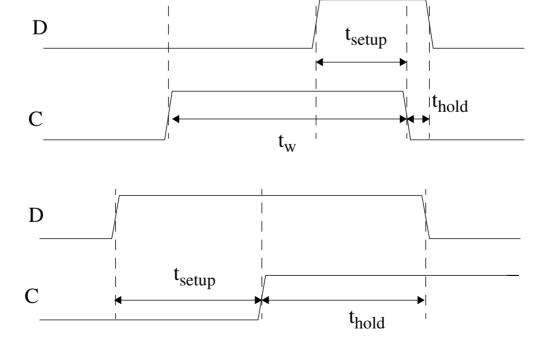
$$Q = J\bar{q} + \bar{K}q$$

$$Q = \overline{R}S + \overline{R}q$$

S ESTUDIO DE LATCHES

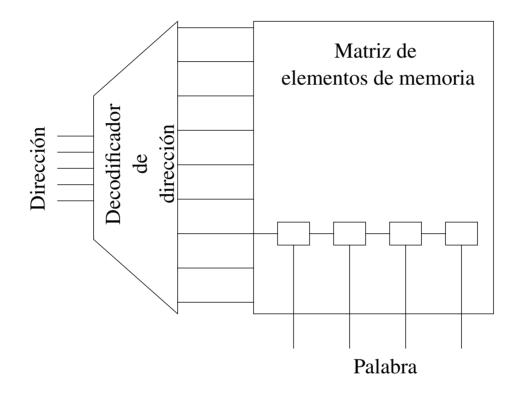


- SEÑALES SÍNCRONAS: SEÑALES DE ENTRADA
 QUE SON CONTROLADAS POR LA SEÑAL DE
 CONTROL (RELOJ), DE TAL FORMA QUE LA
 INFLUENCIA DE ESTAS SEÑALES DEPENDE DE
 LA SEÑAL DE CONTROL.
- SEÑALES ASÍNCRONAS: SEÑALES DE ENTRADA QUE TIENEN LA PROPIEDAD DE TRANSPARENCIA, ES DECIR, SU INFLUENCIA NO ESTÁ CONTROLADA POR NINGUNA SEÑAL ADICIONAL, NI SIQUIERA EL RELOJ.


DIFERENCIA ENTRE SEÑALES SÍNCRONAS Y ASÍNCRONAS R R **R**1 R **S**1 Q' clear clear

ESTUDIO DE FLIP-FLOPS Q_1 D Q Q D Q D _____ clk clk C esclavo maestro C D Q_{\perp} Q S _____ S Q Q - Q S $\overline{\mathbf{Q}}$ $\overline{\mathbf{Q}}$ R R R clk clk **CONFIGURACIÓN** C – TIPO D DIESIA

SÍMBOLOS DE ELEMENTOS DE MEMORIA

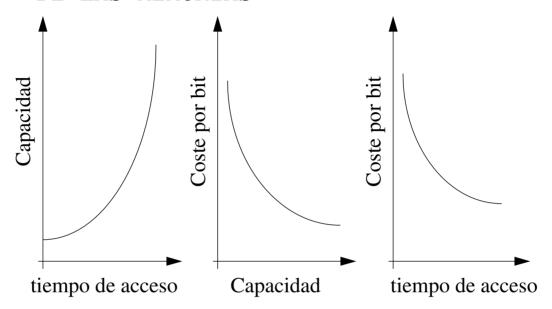


RESTRICCIONES TEMPORALES

☞ MEMORIAS DE SEMICONDUCTORES

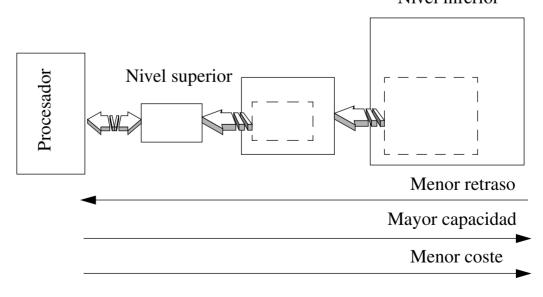
- → PALABRA: CONJUNTO DE BITS QUE PERTENECEN
 A LA MISMA INSTRUCCIÓN O DATO
- → **DIRECCIÓN:** CONJUNTO DE BITS QUE IDENTIFICARÁN UNÍVOCAMENTE A CADA PALABRA DE MEMORIA

- MEMORIA: SISTEMA CAPAZ DE ALMACENAR INFORMACIÓN, LA CUAL ES SUMINISTRADA EN CUALQUIER MOMENTO QUE UN ELEMENTO CONECTADO A ELLA LA SOLICITE
 - ✓ LECTURA
 - ✓ ESCRITURA



CAPACIDAD DE ALMACENAMIENTO: CANTIDAD DE INFORMACIÓN QUE PODEMOS ALMACENAR EN NUESTRO SISTEMA DE MEMORIA

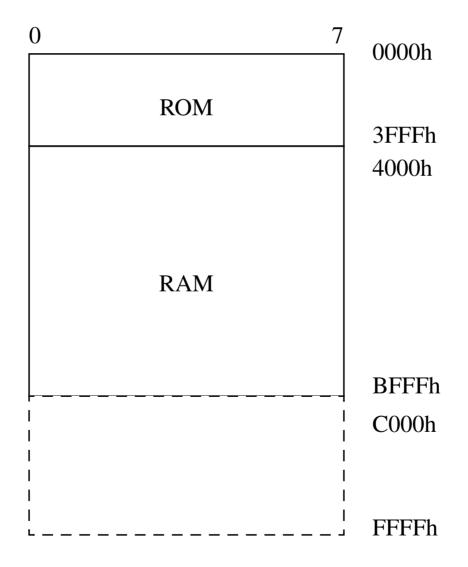
 $1 \text{ K} ---> 2^{10}$

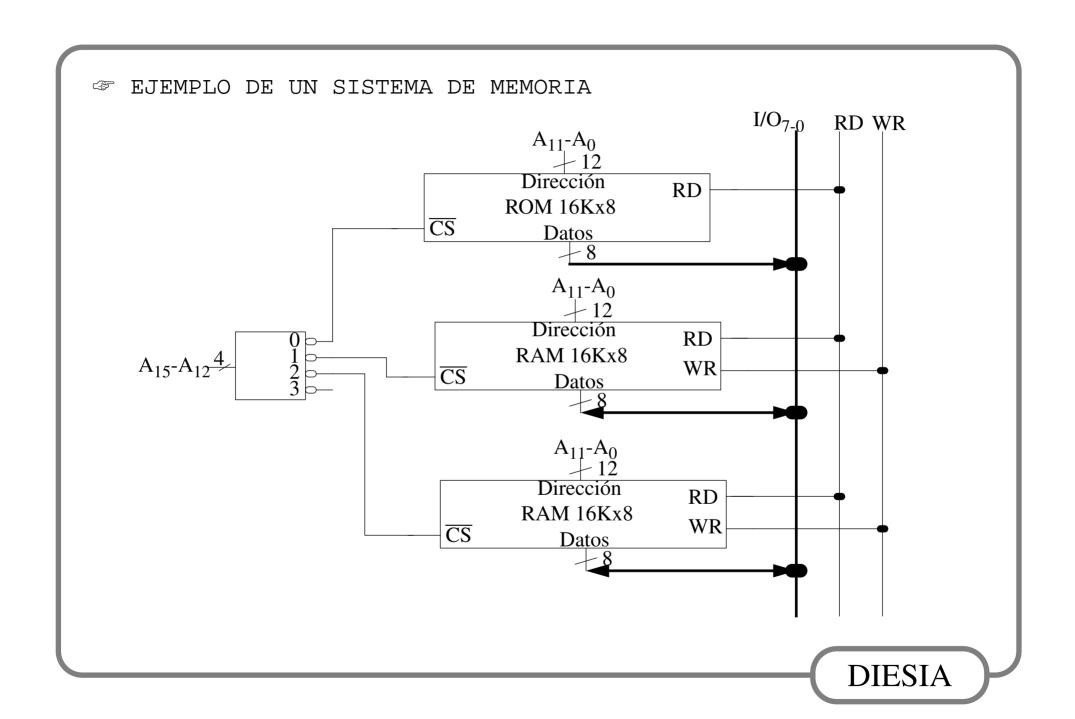

- TIEMPO DE ACCESO: TIEMPO TRANSCURRIDO DESDE QUE SE SUMINISTRA LA DIRECCIÓN HASTA QUE SE ACCEDE A LA PALABRA REQUERIDA
 - ✓ ACCESO ALEATORIO: IGUAL TIEMPO PARA TODAS LAS PALABRAS (MEMORIA RAM)
 - ✓ ACCESO SECUENCIAL: TIEMPO DEPENDIENTE DE LA LOCALIZACIÓN DE LA PALABRA (CINTAS)
 - ✓ ACCESO DIRECTO: LA MEMORIA ES SEPARADA POR BLOQUES, TAL QUE EL ACCESO A CADA BLOQUE ES ALEATORIO, Y A CADA PALABRA DEL BLOQUE ES SECUENCIAL (DISCOS DUROS)
 - ✓ ACCESO POR CONTENIDO: ES UN ACCESO ALEATORIO, PERO LA LECTURA NO DEPENDE DE LA DIRECCIÓN, SINO DE PARTE DEL CONTENIDO DE LA PALABRA (MEMORIA CACHE)
- COSTE POR BIT: PRECIO QUE CUESTA ALMACENAR UN BIT DE INFORMACIÓN.

- MEMORIA IDEAL: GRAN CAPACIDAD, ALTA VELOCIDAD Y POCO PRECIO
- RELACIÓN ENTRE LAS CARACTERÍSTICAS DE LAS MEMORIAS

- ☞ IMPOSIBILIDAD DE LA MEMORIA IDEAL
- JERARQUIZACIÓN DE LA MEMORIA

 Nivel inferior


CLASIFICACIÓN POR TIEMPO DE ALMACENAMIENTO


- MEMORIAS PERMANENTES: LA INFORMACIÓN NO SE PUEDE ALTERAR, UNA VEZ ALMACENADA
- → MEMORIA VOLÁTIL: LA INFORMACIÓN SE PERDERÁ CUANDO SE DESCONECTA LA ALIMENTACIÓN
- → MEMORIA DINÁMICA: LA INFORMACIÓN SE PERDERÁ CUANDO PASE UN DETERMINADO TIEMPO. NECESITA CICLOS DE REFRESCO

CLASIFICACIÓN POR FUNCIONAMIENTO

- → MEMORIAS ROM Y PROM PERMANENTE
- → MEMORIAS EPROM: NO VOLÁTIL, PERO TRATADA COMO PERMANENTE
 - ✓ MEMORIAS EPROM-FLASH
 - ✓ MEMORIAS EEPROM

- → MEMORIAS NOV-RAM = RAM ESTÁTICA + EEPROM NO VOLÁTIL
- MEMORIAS RAM ESTÁTICAS VOLÁTIL
- → MEMORIAS RAM DINÁMICAS VOLÁTIL Y DINÁMICA
- EJEMPLO DE CONFIGURACIÓN DE UN SISTEMA DE MEMORIA.

