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Locating the Optic Nerve in a Retinal Image Using
the Fuzzy Convergence of the Blood Vessels

Adam Hoover� and Michael Goldbaum

Abstract—We describe an automated method to locate the optic
nerve in images of the ocular fundus. Our method uses a novel al-
gorithm we call fuzzy convergence to determine the origination of
the blood vessel network. We evaluate our method using 31 images
of healthy retinas and 50 images of diseased retinas, containing
such diverse symptoms as tortuous vessels, choroidal neovascular-
ization, and hemorrhages that completely obscure the actual nerve.
On this difficult data set, our method achieved 89% correct detec-
tion. We also compare our method against three simpler methods,
demonstrating the performance improvement. All our images and
data are freely available for other researchers to use in evaluating
related methods.

Index Terms—Blood vessels, retinal imaging, optical image pro-
cessing, segmentation.

I. INTRODUCTION

T HE optic nerve is one of the most important organs in the
human retina. The central retinal artery and central retinal

vein emanate through the optic nerve, supplying the upper layers
of the retina with blood. The optic nerve also serves as the con-
duit for the flow of information from the eye to the brain. Most
retinal pathology is local in its early stages, not affecting the en-
tire retina, so that vision impairment is more gradual. In contrast,
pathology on or near the nerve can have a more severe effect in
early stages, due to the necessity of the nerve for vision [16, p.
719].

The optic nerve can be examined in a viewing of the retinal
fundus. The portion of the nerve that is visible in such a view is
called the optic disc, referring to the two-dimensional appear-
ance of the part of the nerve that is visible. Fundus imaging is
a common clinical procedure used to record a viewing of the
retina. This image may be used for diagnosis, treatment eval-
uation, and the keeping of patient history. In this paper, we
describe a process to automatically locate the optic nerve in
a retinal image. Such a tool could be used for automated pa-
tient screening, eye orientation tracking, image sequence regis-
tration, and automated measurements for treatment evaluation
or diagnosis.
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Fig. 1. In a healthy retina, the optic nerve has a readily identifiable size, shape,
color, and location relative to the blood vessels.

Fig. 2. Retina containing lesions of the same brightness as the nerve.

Fig. 1 shows the green plane of an example retinal image. The
optic nerve appears toward the left side of this image as a cir-
cular area, roughly one-sixth the width of the image in diameter,
brighter than the surrounding area, as the convergent area of the
blood vessel network. In an image of a healthy retina, all these
properties (shape, color, size, convergence) help contribute to
the identification of the nerve.

However, these features show a large variance that makes
simple detection methods brittle, particularly in the presence
of retinal disease. Fig. 2 shows an image of a retina containing
drusen. The brightness of these lesions overlaps the brightness
of the nerve, so that using brightness as a lone feature for de-
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Fig. 3. Swollen nerve, showing a distorted size and shape.

Fig. 4. Bright circular lesion that looks similar to an optic nerve.

tection is difficult. Fig. 3 shows an example of a swollen optic
nerve, where the circular shape and size are distorted. Fig. 4
shows a retina exhibiting choroidal neovascularization and sub-
retinal fibrosis, with a bright circular lesion that appears sim-
ilar to a nerve. Fig. 5 shows a retina exhibiting central artery
and vein occlusion, where the nerve is completely obscured by
hemorrhaging. These cases demonstrate the difficulty in optic
nerve detection, and support the need for a robust method that
can work in the presence of a variety of retinal diseases.

In Figs. 1–5, the only consistently visible property of the optic
nerve is that it is the convergent point of the blood vessel net-
work. Therefore, we base our method of optic nerve detection
upon finding the convergence of the blood vessels. In the ab-
sence of a unique and strongly identifiable convergence, our
method uses brightness as a secondary feature for optic nerve
detection. We also compare the success of each of these fea-
tures used alone.

In previous work, we described a method to compute a bi-
nary segmentation of blood vessels [10]. The parameters of this
segmenter can be adjusted to produce vessel segmentations at
different scales. Fig. 6 shows an example, where the segmenta-
tion of the vessels was produced using two different parameter

Fig. 5. Nerve that is completely obscured by hemorrhaging.

(a)

(b)

Fig. 6. Binary segmentation of blood vessels, of image in Fig. 1. (a) Sparser
scale. (b) Denser scale.

sets. In this paper, we use multiple vessel segmentations of the
same image in order to reinforce the detection of convergent
points. The idea is that the convergence should be detectable
using vessel segmentations at different scales.

To find the vessel network convergence, we describe a novel
algorithm we call fuzzy convergence. The algorithm is a voting
type method that works in the spatial domain of the image. The
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input to the algorithm is a binary segmentation of the blood ves-
sels. Each vessel is modeled by a fuzzy segment, which con-
tributes to a cumulative voting image. The output from the al-
gorithm is a convergence image, which is thresholded to identify
the strongest point(s) of convergence.

We test our method on 31 images of healthy retinas and 50
images of diseased retinas. We report the success of our method
to detect the optic nerve using fuzzy convergence alone, and in
conjunction with using brightness as a salient feature.

A. Related Work

The problem of optic nerve detection has rarely received
unique attention. It has been investigated as a precursor for
other issues, for example as identifying a starting point for
blood vessel segmentation [23], [24]. It has also been investi-
gated as a byproduct of general retinal image segmentation,
for instance into separate identifications of arteries, veins,
the nerve, the fovea, and lesions [1], [7], [13], [17]. Here, we
review these related works.

In [13], a method is presented to segment a retinal image into
arteries, veins, the optic disk, the macula, and background. The
method is based upon split-and-merge segmentation, followed
by feature based classification. The features used for classifica-
tion include region intensity and shape. The primary goal of the
paper was vessel measurement; the nerve was identified only to
prevent its inclusion in the measurement of vessels. Ten healthy
retinas and ten retinas with arterial hypertension were used for
experiments. Quantitative results for nerve detection were not
provided. A similar approach was taken in [7], in which the
segmentation was accomplished using matched spatial filters of
bright and dark blobs. Quantitative results for nerve detection
were not provided.

In [17], a method is presented to segment a retinal image
into vessels, the nerve, the fovea, scotomas, and subretinal leak-
ages. Nerve detection is based upon the transform of gradient
edges into a Hough space describing circles. The search is re-
stricted to one-third of the image based upon apriori knowledge
of the expected general location of the nerve. Eleven retinas with
age-related macular degeneration (ARMD) were used for ex-
periments. In 10 out of 11 cases, the nerve was successfully de-
tected. In [1], a method is presented to segment a retinal image
into arteries, veins, the optic disk, and lesions. Nerve detection
is based upon tracking the vessel network to a common starting
point. The tracking process uses the angles between vessels at
branch points to identify the trunk. A result is shown for two
images; quantitative results were not provided.

In [24], a method is described to detect the optic nerve as a
starting point for tracking-based segmentation of blood vessels.
Nerve detection is based upon locating the brightest region in
a restricted third of the image. Three retinal images were used
for experiments. Although the health of these retinas is not re-
ported, the nerves show readily identifiable properties similar
to the nerve shown in Fig. 1 of this paper. In all three cases, the
nerve was successfully detected. A similar method is described
in [20].

In [23], the nerve was detected using the transform of gradient
edges into a Hough space describing circles. Quantitative results
were not provided. A similar method is described in [2].

Fig. 7. Outline of our method for optic nerve detection.

In [14], a method is described to track eye movements based
upon retinal features, including the nerve. Nerve detection is ac-
complished using basic thresholding for bright areas. Quantita-
tive results were not provided.

In [5], a method is described to detect the optic nerve in a
retinal image. Nerve detection is based upon three features:
bright circularity, vertical vessel detection, and discrete vessel
convergence. Bright circle detection is accomplished using
least-median-of-squares fitting of gradient points. Vertical ves-
sels contribute to bins distributed horizontally across the image;
the idea is that the primary four vessels emanate near-vertically
from the nerve in a standard retinal image. Discrete vessel
convergence is accomplished using a method similar to the
fuzzy convergence reported herein, except that each vessel
is modeled by a single line in a coarse voting space. In later
testing [3], 133 retinas containing various health disorders
were used for experiments. In 106 cases (80%), the nerve was
successfully detected.

Our work differs from previous methods in that we use blood
vessel convergence as the primary feature for detection. We test
our method on 81 images showing a variety of retinal diseases,
confusing lesions and manifestations. On this difficult data set,
our method achieves an 89% correct detection rate.

II. M ETHODS

Our method for optic nerve detection is outlined in Fig. 7.
It is based primarily upon a novel algorithm we call fuzzy
convergence. This algorithm identifies the optic nerve as the
focal point of the blood vessel network. In the absence of a
strong convergence, our method identifies the optic nerve as
the brightest region in the image after illumination equaliza-
tion. Section II-A describes fuzzy convergence, Section II-B
describes illumination equalization, and Section II-C describes
our hypothesis generation and consensus.

A. Fuzzy Convergence

The blood vessel segments may be modeled by line segments.
The problem of finding the convergence of the vessel network
may then be modeled as a line intersection problem. Our ap-
proach differs from traditional methods in that we model each
vessel with a line segment (of finite length), as opposed to a line
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(of infinite length). Before describing our approach we review
the least squares and Hough space families of solutions, which
are the two most traditional approaches to line intersection.

Least squares solutions (see [18]) and related approaches
work by minimizing the mean square (or some other function)
of errors between a set of equations and a single solution. In
physical terms, a least squares solution to the intersection of
a set of lines finds the point simultaneously minimally distant
from all the lines. An assumption common to these methods
is that the data set being fitted is uniformly distributed around
the optimal single solution. Subsets of data that do not meet
this criterion are termed outliers, and cause wrong solutions.
Several minimization-based solutions that overcome various
types and amounts of outlier data have been proposed (see
[15]). Generally speaking, these methods work by partitioning
the data set into inliers and outliers, so they are computationally
expensive, and require50% inliers.

Hough space methods (see [12]) and related approaches
work by transforming data points from an image space to a
quantized parameter space. Each data point in effect votes for
a finite number of parameter sets. The parameter set with the
highest total vote is taken for the solution. In physical terms,
a Hough transform solution to the intersection of a set of
lines finds the bin (point at the resolution of the Hough space)
through which the largest number of lines passes. Generally
speaking, these methods model line-like shapes with lines (i.e.,
of infinite length), so any sense of convergence contributed
by the endpoints of the line-like shapes is lost. Simple Hough
spaces also tend to be very sensitive to the chosen resolution.

Fuzzy convergence [9] is a voting-based method. The voting
takes place on the integer grid of the original image. Each
line-like shape is modeled by a fuzzy segment, whose area
contributes votes to its constituent pixels. The summation of
votes at each pixel produces an image map where each pixel
contains a value proportionate to its strength of convergence.
The map is then blurred (to reduce the effects of quantization)
and thresholded to produce one (or more, if desired) points
of strongest convergence. The proposed method runs in O(n)
time, where n is the number of line-like shapes. It does not
require any amount of inliers; instead, an absolute threshold
for strength may be applied to determine if any area should be
deemed convergent.

1) Fuzzy Segment Model:A line segment is defined by its
two endpoints and . In this section, a fuzzy
segment model is proposed. The fuzzy segment, henceforward
denoted as , is defined by a set of parametric line segments

(1)

where

(2)

Fig. 8. Fuzzy segment model.

The amount of “fuzziness” is controlled by the parameter,
which, at zero, reduces the fuzzy segment to the single line seg-
ment from to . The parameter corresponds
to the orientation of that single segment, and is computed as

(3)

The fuzzy segment defines a set of segments of orientations
and lengths ranging about a line segment. The motivation for the
fuzzy segment is best demonstrated through its visualization.
Fig. 8 illustrates the enumeration for the subset ofwhere

. It may be visualized as a moving line segment, whose initial
endpoints are marked in Fig. 8 at . As theta moves from
zero to , the endpoints trace the boundaries of circles, one in
the clockwise direction, the other counterclockwise. By starting

at , the shape of the fuzzy segment remains invariant to
orientation.

Relevant previous work in fuzzy geometry (see [4], [8], and
[19]) deals mainly with fuzzy line models. The fuzzy segment

is proposed as a model for the area in which an observed
line-like shape contributes to a sense of convergence. The model
proposes that the contribution of the midpoint of the line-like
shape is more compact than the endpoints. The width of the
fuzzy segment at its midpoint is

(4)

while the width at its endpoints is . The model also proposes
that a line-like shape generally only contributes to a convergence
in its “near” neighborhood. The term “near” is subjectively ap-
plicable and implies the area within some perceptually relevant
distance surrounding the line-like shape. The model allows for
an interpretation of what is near via the parameter.

2) Convergence Image:Given a binary input image, like the
one depicted in Fig. 6, a process for finding convergences works
as follows.

1) Thin the image (for instance, using the algorithm given in
[12, p. 59]).
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2) Erase (relabel as background) all branchpoints, breaking
up the entire foreground into segments that contain two
endpoints each. In a thinned image, endpoints may be
discovered as any pixel for which a traverse of the eight
bordering pixels in clockwise order yields only one fore-
ground-to-background transition. Similarly, branchpoints
may be discovered as any pixel for which the same tra-
verse yields more than two transitions.

3) Extend each segment a distance of R pixels in both di-
rections. The extension is done along the vector made by
the segment’s endpoints. For our experiments, we used

(the average distance between vessels in the
nerve in our data set).

4) Model each segment, via its two extended endpoints,
with a fuzzy segment . The image area covered by

may be found by enumerating at with
suitable discretizations of and . For the experiments
reported herein, was enumerated to produce unique
pixel coordinates for endpoints. For each, was also
enumerated to produce unique pixel coordinates. Since
the line segments at different’s overlap, a second binary
image is used to keep track of which pixels are found to
lie in . This image is cleared after each fuzzy segment
enumeration and voting is completed.

5) For each pixel enumerated in, a vote is cast. The
image used to tally these votes is termed the convergence
image. Several voting functions were explored, including
weighting by segment size, and weighting by distance
from midpoint. Interestingly, no function seemed to work
better, overall, than the simplest: equal voting for
all pixels in each .

6) Smooth the convergence image to identify the center of
the peak of convergences. Fig. 9 shows the smoothed con-
vergence images for the vessel segmentations shown in
Fig. 6 superimposed on the thinned segments. The mea-
sures of convergence have been normalized so that the
highest vote appears darkest. For our experiments, we
used an 11 11 mean filter for smoothing.

B. Illumination Equalization

The illumination in a retinal image is uneven [11]. The
imbalance is primarily due to an optical aberration called vi-
gnetting (see, for example, [21, p. 490]). Vignetting is the result
of an improper focusing of light through an optical system. The
result is that the brightness of the image generally decreases
radially outward from near the center of the image. Fig. 10(a)
shows a retinal image demonstrating uneven illumination.
Fig. 10(b) shows the local average intensity, displayed using
random shades of grey to show iso-intensity contours.

In our case, the imbalance is complicated by the optics of the
system used to capture the image. A retinal image is captured by
viewing the inner rear surface of the eyeball through the pupil.
The lens of the camera works in conjunction with the lens of the
eyeball to form the image. Since the position of the eye relative
to the camera varies from image to image, the exact properties
of the vignetting also vary from image to image.

(a)

(b)

Fig. 9. Fuzzy convergence of blood vessels shown in Fig. 6. (a) Sparser scale
(two out of six). (b) Denser scale (five out of six).

The uneven illumination hinders absolute interpretation of the
intensities in the image. In a healthy retina, the optic nerve is
usually the brightest feature. Applying a simple high threshold
to an image of a healthy retina should yield pixels inside the
optic nerve. However, a retinal image is often captured so that
the fovea appears mid-image, with the nerve to one side. Be-
cause of the vignetting, the nerve may appear darker than areas
central to the image (as in Fig. 10).

In order to undo the vignetting, we apply an illumination
equalization to the image. Each pixel in the image is ad-
justed as follows:

(5)

where is the desired average intensity (128 in an 8-bit
greyscale image) and is the local average intensity. The
local average intensity is computed independently for each
pixel as the average intensity of the pixels within an NN
window. The window size N is variable, so that averages near
the border of the image use the same number of pixels (between
30 and 50 in our experiments) as averages in the center of the
image. The local average intensities are also smoothed using

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 27, 2008 at 06:14 from IEEE Xplore.  Restrictions apply.



956 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 8, AUGUST 2003

(a)

(b)

Fig. 10. Illumination across the image is uneven, due to the imaging process.
(a) Raw image. (b) Average local intensity (iso-contours).

Fig. 11. Result of illumination equalization on the image in Fig. 10.

the same windowing, to prevent blurring the image features.
This process can be implemented using a sliding window
algorithm (see for instance [21, p.75]), so that the computations
are fast. Fig. 11 shows the result of illumination equalization
upon the image in Fig. 10.

C. Hypothesis Generation

Both the fuzzy convergence and illumination equalization al-
gorithms produce images in which the brightness of a pixel is

indicative of the presence of the optic nerve. In order to gen-
erate a hypothesis of nerve location, either image is thresholded
to identify the brightest 1500 pixels (or darkest 1500 pixels as
depicted in Fig. 9). The quantity 1500 was chosen based upon
the observation that this is the average number of pixels that
“stand out” in an optic nerve in our images (our imaging resolu-
tion is 605 700 pixels on a 35 field-of-view). These pixels
are grouped into regions using standard 8-connected compo-
nent analysis. Any regions within five pixels of each other are
grouped using standard morphological operators. This last step
groups areas that may be separated by blood vessels, as com-
monly occurs in the nerve.

The regions are sorted and separated into two classes, ac-
cording to region size, using Fisher’s linear discriminant (see
for instance [6, p.114]). This statistical test finds the best sep-
aration of the regions into those that are “large” and those that
are “small” or insignificant. It works as follows. The regions are
sorted by size, and repeatedly partitioned into two sets,and .
The initial partition has only the largest element (region size) in
set , and all other elements in set. Each partitioning moves
the largest remaining element from setinto set , until there
is only one element left in set. Thus, for total elements (re-
gions) there will be total partitions.

For each partition, the discriminant statistic is computed
as

(6)

where and are the mean and standard deviation of each
set. The largest value of indicates the best partition. If only
one region passes this test (resides in setfor the largest value
of ), its centroid is deemed a hypothesis of the optic nerve
location. If more than one region passes this test, then the result
is deemed inconclusive, and no hypothesis is generated.

III. RESULTS

We test our methods on 31 images of healthy retinas and
50 images of retinas with disease (all the images shown in
this paper are included in our test set). All these images
were acquired using a TopCon TRV-50 fundus camera at 35
field-of-view, and subsequently digitized at 605700 pixels
in resolution, 24 bits per pixel (standard RGB). In this paper,
only the green band of the image was used (the red band of a
retinal image tends to be saturated, and the blue band tends to
be empty). The nerve is visible in all 81 images, although in 14
images it is on the border of the image so that only a fraction
of the nerve is visible, and in five of the images the nerve is
completely obscured by hemorrhaging. All our images and
results may be viewed at [22].

We tested our methods in four variations.

1) Equalized brightness—This variation uses illumination
equalization followed by hypothesis generation.

2) Fuzzy convergence, single scale—This variation applies
fuzzy convergence to a single blood vessel segmentation
(the same scale is used for all images), followed by hy-
pothesis generation.
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Fig. 12. Result on each image shown in this paper.

3) Fuzzy convergence, multiple scales—This variation ap-
plies fuzzy convergence to six segmentations of the blood
vessels, each at a different scale (see Fig. 6). The scales
correspond to the first six of the ten parameter values
given in [10]. The distances between the hypotheses gen-
erated for each scale are measured relative to the radius of
the average optic nerve (60 pixels in our images). If more
than half of the hypotheses (three or more out of six) are
all within this distance, the centroid of these locations is
hypothesized as the optic nerve location. If there is no
such consensus, then the result for the image is deemed
inconclusive, and no hypothesis is generated.

4) Fuzzy convergence and equalized brightness—Variations
numbers 1) and 3) are combined. If the result from fuzzy
convergence at multiple scales is deemed inconclusive,
then the result from equalized brightness is used.

The center point of the nerve in each image was recorded
manually, for ground truth. A nerve is considered successfully
detected if the hypothesis generated by the automated method
is within the optic nerve, measured as within 60 pixels of the
ground truth location. The nerve detection is considered un-
successful if either the hypothesized location is wrong, or if
our method did not produce a hypothesis (see “inconclusive,”
above). Fig. 12 shows the results for all the images shown in
this paper, all of which are considered successes. Table I tabu-
lates the success rates of the methods on all 81 images.

The results for the equalized brightness method demonstrate
the limit on the usefulness of brightness as a lone feature for
nerve detection (62%). They also demonstrate that the bright-
ness of the nerve is more easily confused in diseased retinas
than in healthy retinas (52% versus 77%).

The results for fuzzy convergence at a single scale show that
the convergence of the vessel network is a more stable feature
of the nerve than the brightness (74% versus 62%). They also

TABLE I
RESULTS OFOUR METHODS ON31 HEALTHY RETINAS AND 50

DISEASEDRETINAS

demonstrate that the visibility of the convergence is apparently
independent of the health of the retina (74% versus 74%).

The results for fuzzy convergence at multiple scales shows
that the persistence of this feature at multiple scales of vessels
improves the detection of the nerve (79% versus 74%).

Finally, the results for fuzzy convergence at multiple scales
in combination with equalized brightness shows the highest per-
formance overall (89%), and complete success on all our healthy
retina test cases (100%).

In the cases where our method failed, the cause was usually
a convergence of blood vessels around a bright lesion. In these
cases, an additional operator that searched for circularity and
appropriate size of the bright region (hypothesized nerve loca-
tion) may improve performance.

IV. CONCLUSION

We have presented novel methods to automatically locate the
optic nerve in a retinal image. Our methods use the convergence
of the blood vessel network as the primary feature for detection,
in conjunction with the brightness of the nerve as a secondary
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feature. We have tested our methods on 31 images of healthy
retinas and 50 images of diseased retinas, exhibiting a wide va-
riety of lesions and confusing manifestations. On this difficult
data set, our methods successfully detect the nerve in 89% of
the cases, and in 100% of the healthy cases. We believe this im-
proves upon all previously published methods, although few of
these previous works reports quantitative results against which
we can compare. All of our images and results are freely avail-
able [22] for other researchers interested in related work.

Our method for finding the convergence of the blood vessel
network is based upon a novel algorithm we call fuzzy conver-
gence. Unlike least-squares and Hough-space-based solutions,
fuzzy convergence uses the endpoints of the linear shapes (in
our case blood vessel segments) to help find the solution. Iden-
tifying the intersection of a number of lines (a convergence) is a
fundamental geometric problem, with applications ranging from
astronomy to engineering, such as model fitting and prediction.
We also believe that fuzzy convergence may find usefulness in
other medical applications besides optic nerve detection. We in-
tend to explore these issues in future work.

REFERENCES

[1] K. Akita and H. Kuga, “A computer method of understanding ocular
fundus images,”Pattern Recognit., vol. 15, no. 6, pp. 431–443, 1982.

[2] S. Barrett, E. Naess, and T. Molvik, “Employing the hough transform to
locate the optic disk,”Biomed. Sci. Instrum., vol. 37, pp. 81–86, 2001.

[3] J. Boyd, “STARE software documentation: Disk—Optic disk locator,”
Vis. Comput. Lab., Dept. Elect. Comput. Eng., Univ. California, San
Diego, CA, Sept. 1996. Tech. Rep..

[4] B. B. Chaudhuri, “Some shape definitions in fuzzy geometry of space,”
Pattern Recognit. Lett., vol. 12, pp. 531–535, Sept. 1991.

[5] S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum,
“Automatic detection of the optic nerve in retinal images,” inProc. IEEE
Int. Conf. Image Processing, 1989, pp. 1–5.

[6] R. Duda and P. Hart,Pattern Classification and Scene Analysis. New
York: Wiley, 1973.

[7] M. Goldbaum, S. Moezzi, A. Taylor, S. Chatterjee, J. Boyd, E. Hunter,
and R. Jain, “Automated diagnosis and image understanding with object
extraction, object classification, and inferencing in retinal images,” in
Proc. IEEE Int. Conf. Image Processing, 1996, pp. 695–698.

[8] K. Gupta and S. Ray, “Fuzzy plane projective geometry,”Fuzzy Sets
Syst., vol. 54, pp. 191–206, 1993.

[9] A. Hoover and M. Goldbaum, “Fuzzy convergence,” inProc. IEEE Conf.
Computer Vision and Pattern Recognition, 1998, pp. 716–721.

[10] A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood vessels
in retinal images by piecewise threshold probing of a matched filter re-
sponse,”IEEE Trans. Med. Imag., vol. 19, pp. 203–210, Mar. 2000.

[11] A. Hoover and M. Goldbaum, “Illumination equalization of a retinal
image using the blood vessels as a reference,” inProc. Annu. Meeting
of the Association for Research in Vision and Ophthalmology (ARVO),
2001.

[12] R. Jain, R. Kasturi, and B. Schunck,Machine Vision. New York: Mc-
Graw-Hill, 1995.

[13] A. Kaupp, A. Dolemeyer, R. Wilzeck, R. Schlosser, S. Wolf, and D.
Meyer-Ebrecht, “Measuring morphological properties of the human
retinal vessel system using a two-stage image processing approach,” in
Proc. IEEE Int. Conf. Image Processing, 1994, pp. 431–435.

[14] H. Kawai and S. Tamura, “Eye movement analysis system using fundus
images,”Pattern Recognit., vol. 19, no. 1, pp. 77–84, 1986.

[15] P. Meer, D. Mintz, and A. Rosenfeld, “Robust regression methods for
computer vision: A review,”Int. J. Comput. Vis., vol. 6, no. 1, pp. 59–70,
1991.

[16] C. Oyster,The Human Eye: Structure and Function. Sunderland, MA:
Sinauer Associates, 1999.

[17] A. Pinz, S. Bernogger, P. Datlinger, and A. Kruger, “Mapping the human
retina,” IEEE Trans. Med. Imag., vol. 17, pp. 606–619, Aug. 1998.

[18] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery,Numerical
Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge,
U.K.: Cambridge Univ. Press, 1992.

[19] A. Rosenfeld, “Geometric properties’ of sets of lines,”Pattern Recognit.
Lett., vol. 16, pp. 549–556, May 1995.

[20] C. Sinthanayothin, J. Boyce, H. Cook, and T. Williamson, “Automated
localization of the optic disc, fovea, and retinal blood vessels from digital
color fundus images,”Br. J. Ophthalmol., vol. 83, pp. 902–910, 1999.

[21] M. Sonka, V. Hlavac, and R. Boyle,Image Processing, Analysis and
Machine Vision, 2nd ed. London, U.K.: Chapman & Hall, 1999.

[22] STARE project website (2003, July). [Online]. Available:
http://www.ces.clemson.edu/~ahoover/stare

[23] S. Tamura, Y. Okamoto, and K. Yanashima, “Zero-crossing interval cor-
rection in tracing eye-fundus blood vessels,”Pattern Recognit., vol. 21,
no. 3, pp. 227–233, 1988.

[24] Y. Tolias and S. Panas, “A fuzzy vessel tracking algorithm for retinal
images based on fuzzy clustering,”IEEE Trans. Med. Imag., vol. 17,
pp. 263–273, Apr. 1998.

Authorized licensed use limited to: IEEE Xplore Customer. Downloaded on October 27, 2008 at 06:14 from IEEE Xplore.  Restrictions apply.


