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Detection of Optic Disc in Retinal Images by Means
of a Geometrical Model of Vessel Structure

M. Foracchia, E. Grisan, and A. Ruggeri*, Senior Member, IEEE

Abstract—We present here a new method to identify the posi-
tion of the optic disc (OD) in retinal fundus images. The method is
based on the preliminary detection of the main retinal vessels. All
retinal vessels originate from the OD and their path follows a sim-
ilar directional pattern (parabolic course) in all images. To describe
the general direction of retinal vessels at any given position in the
image, a geometrical parametric model was proposed, where two of
the model parameters are the coordinates of the OD center. Using
as experimental data samples of vessel centerline points and cor-
responding vessel directions, provided by any vessel identification
procedure, model parameters were identified by means of a sim-
ulated annealing optimization technique. These estimated values
provide the coordinates of the center of OD. A Matlab® prototype
implementing this method was developed. An evaluation of the pro-
posed procedure was performed using the set of 81 images from the
STARE project, containing images from both normal and patho-
logical subjects. The OD position was correctly identified in 79 out
of 81 images (98%), even in rather difficult pathological situations.

Index Terms—Geometrical model, optic disc, simulated an-
nealing, retinal images, vessel tracking.

I. INTRODUCTION

THE OPTIC DISC (OD), which in fundus images usually
appears as a round region brighter than the surrounding, is

the image of the optic nerve (Fig. 1). From it, the central retinal
artery and vein emerge, to cover, with further branching, most
of the retinal region. Locating the OD position in fundus images
is quite important for many reasons. Many important retinal
pathologies may affect the optic nerve. Since the OD may be
easily confounded with large exudative lesions by image anal-
ysis techniques, its detection is also important to exclude it from
the set of possible lesions. Moreover, OD detection is funda-
mental for establishing a frame of reference within the retinal
image and is, thus, important for any image analysis applica-
tion. The detection of OD position is also a prerequisite for the
computation of some important diagnostic indexes for hyperten-
sive/sclerotic retinopathy based on vasculature, such as central
retinal artery equivalent (CRAE) and central retinal vein equiv-
alent (CRVE) [1].
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Fig. 1. Retinal fundus image with vessels and OD (bright round shape on the
right-hand side).

Many techniques have been proposed to detect the OD,
mainly based on its specific round shape and relatively high
brightness, as compared to the rest of the fundus image
(see, e.g., [2]–[7]). These techniques, however, often fail on
pathological images, where other regions of fundus may be
characterized by round shape and/or elevated brightness, e.g.,
large exudative lesions.

Other techniques have been recently proposed, which try
to exploit the information provided by the vessel structure,
i.e., the fact that all retinal vessels originate from the OD. In
Koozekanani et al. [8], an OD tracking technique was devel-
oped for OCT (Optical Coherent Tomography) images, using
a tiered scheme based on the Hough transform, eigenimage
analysis and geometrical analysis based on a vasculature model.
In Hoover and Goldbaum [9], an original vessel segments fuzzy
convergence algorithm was proposed to identify the position
of the optic nerve image as the focal point of the blood vessel
network. Their method achieved 89% of correct identifications
on an image data set developed within the STARE project and
containing many pathological images [10]. It is the same data
set we have used also in the work presented here.

Our proposed method is based on a model of the geometrical
directional pattern of the retinal vascular system, which implic-
itly embeds the information on the OD position as the point of
convergence of all vessels. However, the resulting method is not
just based on the detection of the area of convergence of vessels
(as in [9]), but rather on the fitting of a model with respect to the
entire vascular structure.
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II. METHODS

A. A Geometrical Model of Retinal Vessels Direction

Defining a directional model for retinal vessels requires the
definition on the whole image of a function

which represents the preferential direction in any retinal image
of a vessel present at point . Vector is the set of param-
eters defining the model and its positioning and, thus, it will
include the OD coordinates.

By visual inspection of retinal fundus images (see a represen-
tative example in Fig. 1), it appears that a common vascular pat-
tern is present among images: the main vessels originate from
the OD and follow a specific course that can be geometrically
modeled as two parabolas, with a common vertex inside the OD.
The definition of the directional model can, therefore, be based
on this assumption.

If we assume a Cartesian coordinate system, these parabolas
can be described as the geometrical locus

(1)

where is the parameter governing the aperture of the parabolas
(for sake of simplicity, let us assume for the time being that the
origin of the coordinate system is the vertex of the parabolas).
Fig. 2 shows an example of one such locus overlapped to the
retinal image.

For a generic point belonging to locus , i.e., on the
parabola, the directional model is expressed by the implicit
equation

(2)

where function returns the sign of its argument and vector
p contains parameter . The above expression states that on
the parabolas the preferential vessel direction is tangent to the
parabolas themselves.

In order to completely define the model, it is necessary to ex-
press the preferential direction also outside of the parabolic geo-
metrical locus. implicitly divides every quadrant in two areas:
the internal area (with respect to the convexity of the parabola)
and the external area. Anatomical knowledge indicates that ves-
sels bifurcate when moving away from the OD, and branch ves-
sels tend to diverge from the main vessel. In particular, ves-
sels inside the parabolas quickly bend toward the macula in
the temporal region (left-hand side in Fig. 2), whereas in the
nasal region this inward deflection happens at a much slower
rate (right-hand side in Fig. 2).

The tangent equation (2) was, thus, extended to accommodate
points outside by adding a correction term

(3)

(4)

The numerator of (3) is zero for a point belonging to , whereas
for a point outside its absolute value increases in a way pro-
portional to the vertical distance between the point and . This

Fig. 2. Parabolic model of main vessels course.

increment in tangent magnitude is modulated by expression (4),
which expresses the rate of divergence of the direction at any
given coordinate. For increasing , this rate tends toward
the value of parameter for positive (negative) values of

. Values of and represent, therefore, the limit rates of con-
vergence toward (vertical direction) of the vessel directions
for positive and negative x values. These two rates are in prin-
ciple different, to take care of the different degree of curvature
of vessels in the nasal and temporal side of retina: the lower the
absolute value of this constant, the higher the curvature of ves-
sels as they move away from the OD.

Given a generic origin for the Cartesian coordinates system
in use (e.g., upper-left corner in the image), in order for the
parabolas to be centered at the coordinates of the OD center

, as shown in Fig. 2, a translation transformation had
to be applied to the model

(5)

The complete model for vessel direction at any point
in the image is given by the following equation:

(6)

Fig. 3 shows an example of one such model overlapped to the
retinal image. For sake of clarity, directions are shown
only for some points of the image and optimal values for model
parameters are used for this simulation (see below).

B. Model Parameter Identification

By using suitable model parameter identification techniques,
the optimal value for and, thus, for , can be identi-
fied for any image, given a set of data. The data are the vessel di-
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Fig. 3. Complete model of vessels direction. For sake of clarity, directions
� (gray segments) are shown only on an arbitrary grid of points.

rections measured at points , belonging
to the vascular structure.

Many algorithms have been developed for extracting the
vascular structure from fundus images (see, e.g., [11]–[13]).
Most of them provide, in addition to parameters such as vessel
center-point position and caliber, also vessel direction at the
center-point (this latter parameter can however be easily re-
covered from the identified vessel, e.g., by means of simple
Principal Component Analysis on a set of vessel center-points).
The detected vascular tree can, therefore, be represented by
a set of quadruplets , whose elements represent
respectively the coordinates of vessel center-point , the
vessel caliber and vessel direction at that point.

Our choice for the identification of model parameters has
been the minimization of the weighted residual sum of squares
(RSS)

(7)

Minimization is performed with respect to model parameters
and operator “ ” indicates a modulus- difference between

directions.
Quantities are weights, used to modulate the importance

of each term in the summation. Different options have been
investigated to describe these weights and the best results were
obtained with proportional to vessel caliber . Optimized
values of parameters represent the best positioning
of the OD according to the model fit on the available data

.
Minimization of RSS with classical gradient-based tech-

niques is rather critical, since this function exhibits many local
minima. Fig. 4 represents, e.g., a plot of RSS as a function
of parameters and only. The absolute minimum is
correctly found when are inside the OD, but a
gradient-based algorithm would be easily trapped in one of the
many local minima. To overcome this problem, a simulated
annealing (SA) optimization algorithm has been adopted. SA

is a global stochastic optimization algorithm that theoretically
guarantees the convergence toward global minimum [14].

The working parameters of this procedure (e.g., number of
data points, initial model parameters value, initial temperature,
termination criterion, etc.) have been empirically tuned using a
representative subset of 20 images. The resulting set of values
was then used for model parameter estimation in all 81 images
of the entire data set.

In order to overcome the stochastic nature of SA algorithm,
several optimization runs were performed, starting the proce-
dure from different points in the parameter space, and the final
RSS values were compared to select the smallest one. A number
of six runs for each image proved to be sufficient in our test set.

III. RESULTS

A Matlab® prototype implementing the described method
was realized. An evaluation of the proposed procedure was per-
formed using the 81 fundus images of the STARE project data
set (35 field of view and 700 605 pixels) [10]. Thirty-one
images were from normal subjects, whereas the other 50 con-
tained pathological lesions of various types and severity.

In order to assess the robustness of the proposed procedure
to detect OD position with respect to different vessel detection
algorithms, we have used the measured vessel directions pro-
vided by two sets of vessel data. The first one (Track-1) was ob-
tained by applying a binary segmentation procedure developed
by Hoover et al. [12] and used to provide input data also to their
own system for OD detection [9]. For each image, 10 different
sets of vessel structure data were provided, to produce vessel
segmentations at different scales, from 0 to 9. At variance with
[9], where 6 segmentations for each image were used to detect
vessel convergence and, thus, OD detection, we used only one
segmentation (scale value of 4). The second set of vessel data
(Track-2) was obtained by applying our own procedure, based
on a sparse tracking algorithm [13]. As proposed also in [9], the
OD position was considered correctly detected if the estimated
coordinates were inside the contour of the OD, i.e., within 60
pixels of its center, as manually identified for ground truth.

The method, using either set of vessel data, was able to cor-
rectly position the OD in 79 out of 81 images. Identification
results are summarized in Table I for both vessel detection pro-
cedures. Examples of highly pathological images in which the
OD was successfully identified are shown in Fig. 5.

SA runs took on average 2 min for each image on a mid-size
PC (2-MHz Intel® Pentium® IV CPU and 512 Mb RAM). This
value is expected to be at least ten-fold reduced when a more
efficient C++ implementation of the whole procedure will be
developed.

IV. DISCUSSION

We have developed a new algorithm for the OD detection in
retinal images. It is based on a geometrical model of the di-
rection of main retinal vessels (two parabolas with a common
vertex) and its robustness lies in the a priori knowledge pro-
vided by this model. The model parameters are identified from
a set of data, representing the directions of retinal vessels on a
set of image points, through the minimization of a least-squares
cost function.
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Fig. 4. Plot of RSS values (vertical axis, in arbitrary units) as a function of model parameters x and y (image plane, in pixels).

TABLE I
PERFORMANCES OF THE ALGORITHM, EXPRESSED AS NUMBER OF IMAGES IN

WHICH THE OD WAS CORRECTLY IDENTIFIED OR NOT. IN “TRACK-1,” VESSEL

IDENTIFICATION DATA FROM HOOVER et al. [12] WERE USED, WHEREAS IN

“TRACK-2” OUR OWN TRACKING ALGORITHM [13] WAS EMPLOYED

The model assumes the symmetry of the vascular network
around the parabolas axes, lying horizontally and, thus, images
with vessels having this directional symmetry are required to
obtain a reliable estimate of the OD location. This is reasonable
for the fundus images acquired in clinical settings, with fields
of view including OD (such as standard ETDRS fields 1M and
2M [15] and proposed modified fields NM1 and NM3 [16]).
The vessels identified in the image should also have sufficient
curvature to provide good sensitivity of the model parameters to
the data.

A preliminary investigation was performed to assess the ad-
equacy of the proposed model by analyzing the behavior of
the cost function RSS when model parameter values are varied.
These values were moved one by one on their interval of vari-
ation and the existence of an absolute minimum for RSS was

confirmed. As an example, the values assumed by RSS for pa-
rameters and varying over a grid of coordinates are
shown in Fig. 4; albeit many local minima are present, a global
minimum exists and it is reached just for and at the
center of OD. Moreover, while two different values for param-
eter were found to be necessary ( and ), only one value for
parameter turned out to be adequate for obtaining satisfactory
performances of the algorithm.

The issue of the number of data points to be used in each
image for parameter estimation has been also examined. The
number of points originally provided by the vessel identification
procedures ranged from 4300 to 7800, depending on the quality
of the images and the parameters used in the procedures (e.g.,
scale value in “Track-1”). To reduce the computational burden
of the algorithm, an analysis was performed to identify an av-
erage minimum number of data points. In the subset of 20 im-
ages, we investigated how the reduction in affected the posi-
tion of RSS minima when varying one by one the model param-
eters, in particular and . was gradually decreased,
by sub-sampling the set of data points, until the estimated OD
position moved outside the visually detected OD. A number of
300 data points proved to be adequate for a correct OD identi-
fication in all the subset images and then also in the whole data
set. In the four cases where OD was not correctly identified,
increments of did not provide any improvement, suggesting
that the problem was not linked to the number of data points
used for parameter estimation.

The weights used in cost function (7) are meant to repre-
sent the (lack of) uncertainty attached to the available sample
of measured direction at the specific position. Assigning a
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Fig. 5. Images with estimated parabolas (black line) and OD position (white cross).

higher weight to larger caliber vessels implicitly strengthens
the anatomical assumption that the main vessels tend to be
positioned around the parabolic locus. Smaller vessels, on the
contrary, although presenting a common directional pattern
between images, tend to be less regular; they are also less easily
and accurately identified by vessel identification procedures
and, therefore, should be assigned a higher uncertainty. If these
weights were given the meaning of inverse error variances and
the measured directions were normally and independently dis-
tributed around their true values, the resulting estimator would
be a Maximum Likelihood estimator for the model parameters.

Results on the 81 normal and pathological images of the
STARE project were satisfying, despite the presence of heavily
confounding features in many of them. For example, in the
images shown in Fig. 5, top, the OD is completely covered
by extensive retinal lesions, either dark hemorrhages or bright
exudates, and would have proved impossible to be detected by
techniques based on brightness or shape. In the images of Fig. 5,
bottom, the disc is only partially visible, many confounding
lesions are present and only part of the vascular network is
framed in the image. Thanks to its powerful model-based
extrapolation capabilities, the proposed technique was able to
correctly identify the position of OD also in these very difficult
images. We also tested it in some images where the OD was not

Fig. 6. Image with estimated parabolas (white line), vessel directions (dark
segments) and OD position (white cross). Image not belonging to the STARE
data set.

even present in the analyzed image. An example is shown in
Fig. 6 (image not belonging to the STARE data base), where the
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Fig. 7. Images Im0027 (left) and Im0008 (right), where estimation of OD position (white cross) using data from ‘Track-1’ failed.

Fig. 8. Images Im0041 (left) and Im0026 (right), where estimation of OD position (white cross) using data from ‘Track-2’ failed.

estimated OD position is well in agreement with the location
intuitively reconstructed from anatomical knowledge.

The two cases in which the OD was not correctly detected
are different for “Track-1” (shown in Fig. 7) and for “Track-2”
(shown in Fig. 8). The main reason for failing was the absence
in the images of a sizable part of the vessel structure, e.g., for
a serious pathological situation (Im0026, Fig. 8, right panel),
and especially when the symmetry around the horizontal axis
was totally lost [Im0027, Fig. 7 (left); Im0041, Fig. 8 (left)]. In
one instance [Im0008, Fig. 7 (right)], the vascular structure was
not completely reconstructed and the model predicted a slightly
misplaced OD position.

On the contrary, in Im0026 with ‘Track-1’ data the model was
able to correctly detect the OD position thanks to the erroneous
recognition of radial hemorrhages as vessels. In Im0041, the dif-
ferent ways of recovering vessel calibers (used as weights by the
parameter identification procedure) by ‘Track-1’ with respect to
‘Track-2’, allowedtheformer toprovidefromtheupperpartof the
images (containing smaller vessels) enough data for a correct OD
identification. Conversely, in both Im0027and Im0008, data from
‘Track-2’ allowed a more accurate reconstruction of the vascular
structure and, thus, a correct identification of model parameters.

V. CONCLUSION

The performances of the proposed method, based on a model
of the vascular structure, are dependent on the availability of a
good portion of this structure in the image, whereas are indepen-
dent of the actual visibility (or even presence) of the OD. Being
the vascular structure spread all over the image, it is much less
affected by the presence of confounding or obscuring patholog-
ical areas. The availability of a vessel extraction procedure is a
necessary prerequisite for our technique, and the performances
of this step directly affect the correct positioning of the OD.
However, the remarkably good results we obtained using the
data provided by either procedure used in this work, which were
algorithmically different and independently developed, suggest
that this is not a critical issue.
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