
How is this tutorial organized?

Two hour session consisting of

1. A brief introduction about NLP frameworks and libraries

2. A brief introduction to UIMA (non-programming) end-users

3. A brief comparison between UIMA & GATE

4. Some final practical (and programming) UIMA tips

1

Outline
Architectures/Libraries for NLP

future challenges
“Common Data Representation” Based Frames
API Based Frameworks (Libraries)

What is UIMA?
Programless UIMA
Type System
Analysis Engine
Aggregate Analysis Engine
Collection Processing Engine
Packaging Modules in UIMA

GATE
Practical Tips

Sandbox
Repositories
I want to use my PoS Tagger in UIMA
UIMA Description for my PoS Tagging
UIMA Annotator for my PoS Tagging
Indexes and Iterators
Glossary
Links

2

NLP software

We can classify these tools/libraries/frameworks

I Tools: main program

I “Common Data Representation” (e.g. XML)

I Libraries (APIs): We can use severall funcions (we need to program)

I Frameworks: high level common API + method to integrate new
tools + some extra tools (e.g. to avoid programming)

3

NLP Tools, libraries and frameworks

Which one should I use?
There are many tools, libraries, frameworks for NLP:

I UIMA

I GATE

I Nooj

I Freeling

I OpenNLP

I ...

4

Which NLP tools/lib/framework should I use

No magical solution, but some important questions are:

I Programming Knowledge - Languages

I Available modules (p.e. we need a parser)

I Group or Individual?

I Flexible or Fix Pipeline?
I Flexible: use a framework
I Fix: consider using libraries

I Speed requierements? (frameworks are fast but you pay some
overhead)

I Scalability? need grid computing?

5

Scaling up - Cloud computing

I UIMA Asynchronous Scaleout (Vinci Services instead of Collection
Processing Manager)

I GATE on the cloud starting project http://gatecloud.net/

I GATE/UIMA on hadoop, Behemoth 0.1 (not working on hadop
0.20)

I NLTK and Hadoop Streaming (
http://www.cloudera.com/blog/2010/03/natural-language-
processing-with-hadoop-and-python/)

I ...

6

Using a common data representation

I All the modules share (an xml) data representation

I Advantages: Loose coupling

I Drawbacks: read / write verbose data representation

I Examples:
I Living Knowledge Testbed (European project

http://livingknowledge-project.eu/)
I Kyoto project Kyoto core (KAF)

7

API Based frames

I Tight coupling

I APIs (sometimes accessible from different programming languages)

I Relatively easy to use (for computer scientists)

I Faster

I BUT more complicated to integrate new modules, change the
execution flow...

8

http://gatecloud.net/
http://www.cloudera.com/blog/2010/03/natural-language-processing-with-hadoop-and-python/
http://www.cloudera.com/blog/2010/03/natural-language-processing-with-hadoop-and-python/
http://livingknowledge-project.eu/

API Based frames

The are many API based libraries / frameworks:

I Open NLP

I Freeling

I TANL

I ...

I NLTK

I Nooj

9

Open NLP

http://opennlp.sourceforge.net/
The opennlp project is a set of java-based NLP tools:

I sentence detection

I tokenization

I pos-tagging

I chunking

I parsing

I named-entity detection

I coreference.

it has been wrapped into GATE, UIMA

10

Open NLP

API (http://opennlp.sourceforge.net/api/index.html

11

Freeling

Freeling is an open source set of NLP tools and resources:

I Spanish, Catalan, English, Italian, Galician, Welsh, Portuguese,
Asturian.

I WN-based semantic information access

I word sense disambiguation.

I Expressive rule language for dependency parsing

I Coreference resolution

I C++ / Java / Python API

http://www.lsi.upc.edu/˜nlp/freeling/

12

TANL

Tanl (Text Analytics and Natural Language) is a suite of modules for text
analytics and Natural Language processing.

I Sentence Splitter

I Tokenizer

I POS Tagger, Lemmatizer, Morph tagging

I NE tagger

I Anaphora Resolution

I SuperSense Tagger

I Parser

I Additional tools are used to annotate or process the data: Wikipedia
Extractor, Indexer, Dependency Graph Annotator, Hadoop

I C++ / Python API

http://medialab.di.unipi.it/wiki/Tanl/

13

TANL

Tanl modules can be connected in a pipeline where each module
consumes a stream of input items and produces a stream for later
modules.
The pipeline model consists of three types of components:

I source: creates an initial pipe (e.g. a document reader)

I transform: receives data from one pipe and produces output on
another pipe

I sink: consumes the output of a pipe.

14

TANL

For example a SentenceSplitter is a source that creates a pipe from an
input stream:

ss = SentenceSplitter(’italian.pickle’).pipe(stdin)

The pipe can be connected to other stages that perform tokenization,
POS tagging and parsing as follows:
wt = Tokenizer().pipe(ss)
pt = PosTagger(′italian.pos ′).pipe(wt)
pa = Parser .create(′italian.SVM ′).pipe(pt)

15

TANL

A sink is a process that consumes the output of a pipeline, driving the
pipeline. It can be as simple as a Python iteration:

for sent in pa:
print sent

16

http://opennlp.sourceforge.net/
http://opennlp.sourceforge.net/api/index.html
http://www.lsi.upc.edu/~nlp/freeling/
http://medialab.di.unipi.it/wiki/Tanl/

NLTK

Natural Language Toolkit (NLTK) http://www.nltk.org/

I NLTK was originally created in 2001 as part of a computational
linguistics course (University of Pennsylvania)

I Active developing

I Adopted in courses in dozens of universities, and serves as the basis
of many research projects

17

NLTK

I Simplicity: To provide an intuitive framework with building blocks

I Consistency: To provide a uniform framework with consistent
interfaces and data structures

I Extensibility: To provide a structure into which new software
modules can be easily accommodated (alternative implementations)

I Modularity: To provide components that can be used independently
without needing to understand the rest of the toolkit

18

Nooj

Nooj http://www.nooj4nlp.net/

I NooJ is a linguistic development environment that includes
large-coverage dictionaries and grammars, and parses corpora in real
time.

I NooJ includes tools to create and maintain large-coverage lexical
resources,morphological and syntactic grammars.

I NooJ can build complex concordances, with respect to all types of
Finite State and Context-Free patterns.

I NooJ helps develop extractors to identify semantic units, such as
names of persons, locations, dates, etc.

I Implemented in .NET

I export annotations in xml

19

Reference Material

These slides are a guide to learn the basics of UIMA. They are not
intended to be used as reference material. For reference material, please
refer to the official UIMA documentation at:

http://uima.apache.org/documentation.html

For an extended tutorial and example applications see ESSLLI 2010
workshop Painless NLP Programming with UIMA (with Bard Mellebeck).

I Course material and exercise code is available at
http://esslli2010cph.info/?p=279

I Windows patch available at http://jordi.atserias.cat/home/esslli2010

20

Outline
Architectures/Libraries for NLP

future challenges
“Common Data Representation” Based Frames
API Based Frameworks (Libraries)

What is UIMA?
Programless UIMA
Type System
Analysis Engine
Aggregate Analysis Engine
Collection Processing Engine
Packaging Modules in UIMA

GATE
Practical Tips

Sandbox
Repositories
I want to use my PoS Tagger in UIMA
UIMA Description for my PoS Tagging
UIMA Annotator for my PoS Tagging
Indexes and Iterators
Glossary
Links

21

What is UIMA?

I UIMA = Unstructured Information Management Architecture.

I Unstructured information (text, audio, video, images) >> structured
information (e.g. DB).

I UIMA is a software architecture that supports creating, composing
and deploying a broad range of analysis capabilities to turn
unstructured information into structured information.

I Provides a common data structure (CAS) that is shared between
UIMA modules.

I Facilitates sharing of applications between different teams.

22

What is UIMA?

23

What is UIMA?

I The UIMA framework provides a run-time environment in which
developers can plug in their UIMA component implementations and
with which they can build and deploy UIM applications.

I The UIMA Software Development Kit (SDK) includes the UIMA
framework, plus tools and utilities for using UIMA.

24

http://www.nltk.org/
http://www.nooj4nlp.net/
http://uima.apache.org/documentation.html
http://esslli2010cph.info/?p=279
http://jordi.atserias.cat/home/esslli2010

What is UIMA?

I Originally IBM, now Apache project.

I Industrial-strength applications.

I Academic interest:

I University of Jena, Germany (www.julielab.de)
I Carnegie Mellon University (uima.lti.cs.cmu.edu)
I University of Colorado (bionlp-uima.sourceforge.net)
I University of Tokyo (www-tsujii.is.s.u-tokyo.ac.jp)
I . . .

I Apache License.

25

UIMA = Code + Metadata

I Each UIMA component requires two parts for its implementation:

1. The declarative part = metadata (in XML).

2. The actual code (for now: Java and C++, plus support for scripting
languages Perl, Python, TCL).

I Metadata describes the component, its identity, structure and
behavior.

I This declarative part is called component descriptor.

26

UIMA Building Blocks

27

Practical Part: What do you need before we can start?

I Java version 1.6.

I UIMA version 2.3.0.

I Eclipse IDE (preferably version 3.6 Helios).

I uimaj-examples (eclipse project)

I Cf. install.pdf for more details.

28

Type System

I The Type System determines what annotations the CAS can contain.

I A Type System is domain and application specific.

29

Type System

The built-in Annotation type declares three Features:

I begin and end store the character offsets of the span of text to
which the annotation refers.

I sofa (Subject of Analysis) indicates which document the begin and
end offsets point to.

30

Types are organized hierarchically

31

Type System

I In Eclipse, expand the uimaj-examples project in the Package
Explorer view.

I Right-click on the file in the navigator and select Open With →
Component Descriptor Editor.

I Once the editor opens, click on the ‘Type System’ tab at the bottom
of the editor window.

I Try this with the file
uimaj-examples/descriptors/tutorial/ex1/TutorialTypeSystem.xml.

32

file:www.julielab.de
file:uima.lti.cs.cmu.edu
file:bionlp-uima.sourceforge.net
file:www-tsujii.is.s.u-tokyo.ac.jp

Type System

33

JCasgen

I When you save a descriptor that you have modified, the Component
Descriptor Editor will automatically generate Java classes
corresponding to the types that are defined in that descriptor (unless
this has been disabled), using a utility called JCasGen.

I These Java classes will have the same name (including package) as
the CAS types, and will have get and set methods for each of the
features that you have defined.

34

“Block building” UIMA User Case

I We have a set of UIMA components (e.g. tokenizer, parser).

I Based on the same or compatible Type systems.

I Need to select and connect the modules in the appropriate order.

I Set some parameters of the components.

UIMA allows you to do this without programming, by just writing meta
data (an Analysis Engine Descriptor).

35

Analysis Engine

I Analysis Engine (AE): fundamental processing component for
document analysis in UIMA.

I Analysis Engines consist of metadata (Descriptor) + code
(Annotator).

I E.g. a POS tagger AE consists of an XML descriptor (metadata,
parameters, ...) + an annotator implemented in Java.

I Analysis Engines can be primitive or aggregate.

I Primitive AEs consist of a single processing module.
I Aggregate AEs consist of multiple processing modules.

36

Analysis Engine

I Gets input information from a CAS (e.g. the text of the document)

I Modify the CAS adding new annotations (or modifying the existing
ones)

37

Analysis Engine Descriptor

I In Eclipse, right-click on
descriptors/tutorial/ex1/RoomNumberAnnotator.xml

I Open With → Component Descriptor Editor.

I Tip: In Eclipse, you can double click on the tab at the top of the
Component Descriptor Editor’s window identifying the currently
selected editor, and the window will Maximize. Double click it again
to restore the original size.

38

Analysis Engine Descriptor

39

Analysis Engines need a Type System

40

Annotator Capabilities

On the Capabilities page, we define the annotator’s inputs and outputs,
in terms of the types in the type system.

41

Apache UIMA SDK

The UIMA SDK contains a number of tools that facilitate the
construction/analysis/debugging of UIM applications.

I UIMA Plugins (Edit xml description files)

I Component Descriptor Editor

I Document Analyzer

I Annotation Viewer

I CPE Configurator

I CAS Visual Debugger

I ...

42

Using the Document Analyzer

In order to run document analyzer from Eclipse:

I Run → Run configurations.

I if UIMA Document Analyzer is not in the Run configurations:
I Create a new Launch configuration (click icon in left top corner).
I Project Select the UIMA examples project.
I Main class Select the class Document Analyzer

(org.apache.uima.tools)

43

Document Analyzer

44

Document Analyzer Results

45

Aggregate Analysis Engine: basic principle

I A Single Analysis Engine reads in the CAS, does some processing
and updates the CAS.

I An Aggregate Analysis Engine is a unit that contains multiple
Analysis Engines.

I Aggregate Analysis Engines are built to encapsulate a potentially
complex internal structure and insulate it from users of the AE.

46

Example: Combining Several Analysis Engines

47

Aggregate Analysis Engine Descriptor

Open RoomNumberAndDateTime.xml in descriptors/tutorial/ex3
in the uimaj-examples project.

48

Aggregate Analysis Engine Capabilities

You explicitly declare the aggregate Analysis Engine’s inputs and outputs
on the Capabilities page:

49

Aggregate AEs behave the same as Primitive AEs

I Run → Run configurations → Document Analyzer

I Select descriptor
examples/descriptors/tutorial/ex3/RoomNumberAndDateTime.xml

50

Some hints about flow and scalability

I Workflows:
I Fixed Flow: pipeline
I Capability Language Flow: skip AE base on Language / output

capability

I User can implement their own workflows (code + descriptors)

I e.g. org.apache.uima.examples.flow.WhiteboardFlowController

51

Collection Processing

I Many UIMA applications analyze entire collections of documents.

I CPE = Collection Processing Engine.

52

Collection Processing Engine (CPE)

A CPE has 3 main components:

I Collection Readers

I Analysis Engine

I CasConsumer

53

CPE Components

54

CPE Configurator

Run → Run configurations → UIMA CPE GUI.

55

CPE example: set the CPE Configurator

Collection Reader:
UIMA HOME/examples/descriptors/
collection reader/FileSystemCollectionReader.xml

Analysis Engine:
UIMA HOME/examples/descriptors/
analysis engine/namesAndPersonTitles TAE.xml

CAS Consumer:
UIMA HOME/examples/descriptors/
cas consumer/XmiWriterCasConsumer.xml

56

CPE example

57

Annotation Viewer

I Viewer for exploring annotations and related CAS data.

58

Annotation Viewer

I Run → Run configurations → UIMA Annotation Viewer

I Input: examples/data/processed

I TS or descriptor: exam-
ples/descriptors/analysis engine/NamesAndPersonTitles TAE.xml

59

Annotation Viewer Results

60

PEAR file

I A PEAR (Processing Engine ARchive) file is a standard package for
UIMA components.

I The PEAR package can be used for distribution and reuse by other
components or applications.

I It also allows applications and tools to manage UIMA components
automatically for verification, deployment, invocation, testing, etc.

I Can be generated inside Eclipse or using maven plugin

61

The PEAR Structure

Important folders

I metadata/ contains the PEAR
installation descriptor
install.xml.

I desc/ contains descriptor files
of analysis engines, delegates
analysis engines (all levels), and
other components (Collection
Readers, CAS Consumers, etc).

62

PEAR files must be self-contained

I The PEAR structure must be self-contained: the component must
run properly independently from the PEAR root folder location.

I No absolute paths.

I Also handy if applications in a UIMA pipeline use different versions
of a specific jar file.

63

The install.xml file

I <SUBMITTED COMPONENT>: the component id is a string that
uniquely identifies the component.

I <INSTALLATION>: this section specifies the external dependencies
of the component and the operations that should be performed
during the PEAR package installation.

I The <INSTALLATION> section may specify the following
operations:

I Setting environment variables that are required to run the installed
component.

I Finding and replacing string expressions in files.

I For more info, Cf.
http://uima.apache.org/downloads/releaseDocs/2.3.0-incubating/docs/html/references/references.html#ugr.ref.pear

64

http://uima.apache.org/downloads/releaseDocs/2.3.0-incubating/docs/html/references/references.html#ugr.ref.pear

Macros

I Macros are variables that can be used to represent the full path of a
certain directory during or after installation. The use of macros
make PEAR files generic enough so they can be installed everywhere.

I There are two macro variables:

1. $main root: e.g. $main root/data

2. $component id$root: e.g.
$my.comp.Dictionary$root/resources/dict

I These variables can be inserted in certain parts of install.xml and
in files in the desc/ and conf/ directories. During installation of
the PEAR, they are replaced by their values. These values are stored
in the metadata/PEAR.properties file that is generated during PEAR
installation.

65

Outline
Architectures/Libraries for NLP

future challenges
“Common Data Representation” Based Frames
API Based Frameworks (Libraries)

What is UIMA?
Programless UIMA
Type System
Analysis Engine
Aggregate Analysis Engine
Collection Processing Engine
Packaging Modules in UIMA

GATE
Practical Tips

Sandbox
Repositories
I want to use my PoS Tagger in UIMA
UIMA Description for my PoS Tagging
UIMA Annotator for my PoS Tagging
Indexes and Iterators
Glossary
Links

66

Gate:General Architecture For Text Engineering

General Architecture For Text Engineering is over 15 years old and is in
active use for all types of computational tasks involving human language.
http://gate.ac.uk

67

Gate:General Architecture For Text Engineering

Refer to GATE first page

68

Gate:General Architecture For Text Engineering

69

Gate:General Architecture For Text Engineering

GATE components are one of three types:

I LanguageResources (LRs) represent entities such as lexicons,
corpora or ontologies;

I ProcessingResources (PRs) represent entities that are primarily
algorithmic, such as parsers, generators or ngram modellers;

I VisualResources (VRs) represent visualisation and editing
components that participate in GUIs.

70

Gate:General Architecture For Text Engineering

Metadata (xml) to configure your resources, e.g. creole.xml file

<CREOLE-DIRECTORY>

<CREOLE>

<RESOURCE>

<NAME>Minipar Wrapper</NAME>

<JAR>MiniparWrapper.jar</JAR>

<CLASS>minipar.Minipar</CLASS>

<COMMENT>MiniPar is a shallow parser. It determines the

dependency relationships between the words of a sentence.</COMMENT>

<HELPURL>http://gate.ac.uk/cgi-bin/userguide/sec:parsers:minipar</HELPURL>

<PARAMETER NAME="document"

RUNTIME="true"

COMMENT="document to process">gate.Document</PARAMETER>

<PARAMETER NAME="miniparDataDir"

RUNTIME="true"

COMMENT="location of the Minipar data directory">

java.net.URL

</PARAMETER>

<PARAMETER NAME="miniparBinary"

RUNTIME="true"

COMMENT="Name of the Minipar command file">

java.net.URL

71

Gate and UIMA

I In GATE, unit of processing is the Document
I Text, plus features, plus annotations
I Annotations can have arbitrary features, with any Java object as

value

I In UIMA, unit of processing is (T)CAS (common analysis structure)
I Text, plus Feature Structures
I Annotations are just a special kind of FS, which includes start and

end offset features

72

http://gate.ac.uk

Gate and UIMA

I In GATE, annotations can have any features, with any values

I In UIMA, feature structures are strongly typed
I Must declare what types of annotations are supported by each

analysis engine
I Must specify what features each annotation type supports
I Must specify what type feature values may take
I Primitive types - string, integer, float
I Reference types - reference to another FS in the CAS
I Arrays of the above
I All defined in XML descriptor for the AE

73

Complex typesystem

Figure: BioNLP-UIMA UML Diagram

74

Complex typesystem

I Wrappers depend on types

I Different types for the same kind of information

I opennlp.uima.Token vs de.julielab.jules.types.Token

I Parametrization of types in the wrapper can easy this problem (see
opennlp-uima)

75

UIMA mixing C++ and Java

UIMA c++ is still quite new
http://uima.apache.org/doc-uimacpp-huh.html

Figure: UIMA C++ and Java AE

76

Gate and UIMA

More Information about GATE and UIMA

I GATE DOC http://gate.ac.uk/sale/tao/splitch18.html#chap:uima

I talk http://gate.ac.uk/g8/page/print/2/sale/talks/gate-
course.../uimaintegration.ppt

I talk http://gate.ac.uk/sale/talks/gatecoursejuly09/slidespdf/uima-
integration.pdf

77

Outline
Architectures/Libraries for NLP

future challenges
“Common Data Representation” Based Frames
API Based Frameworks (Libraries)

What is UIMA?
Programless UIMA
Type System
Analysis Engine
Aggregate Analysis Engine
Collection Processing Engine
Packaging Modules in UIMA

GATE
Practical Tips

Sandbox
Repositories
I want to use my PoS Tagger in UIMA
UIMA Description for my PoS Tagging
UIMA Annotator for my PoS Tagging
Indexes and Iterators
Glossary
Links

78

What is the Sandbox?

I A workspace that is open to all UIMA committers and developers
who would like to contribute code and join the UIMA developer
community.

I http://uima.apache.org/sandbox.html

79

UIMA Sandbox Components

80

http://uima.apache.org/doc-uimacpp-huh.html
http://gate.ac.uk/sale/tao/splitch18.html#chap:uima
http://gate.ac.uk/g8/page/print/2/sale/talks/gate\discretionary {-}{}{}course.../uima\discretionary {-}{}{}integration.ppt
http://gate.ac.uk/g8/page/print/2/sale/talks/gate\discretionary {-}{}{}course.../uima\discretionary {-}{}{}integration.ppt
http://gate.ac.uk/sale/talks/gate\discretionary {-}{}{}course\discretionary {-}{}{}july09/slides\discretionary {-}{}{}pdf/uima\discretionary {-}{}{}integration.pdf
http://gate.ac.uk/sale/talks/gate\discretionary {-}{}{}course\discretionary {-}{}{}july09/slides\discretionary {-}{}{}pdf/uima\discretionary {-}{}{}integration.pdf

CAS Editor: Manual Annotations with UIMA

http://incubator.apache.org/uima/sandbox.html

81

UIMA Repositories

uima.lti.cs.cmu.edu a repository of UIMA components.

u-compare.org an integrated text mining/natural
language processing system, Java
Web Start Technology.

www.julielab.de a comprehensive NLP tool suite
for the application purposes of se-
mantic search, information extrac-
tion and text mining, focused on
biomedical text processing.

bionlp-uima.sourceforge.net UIMA wrappers for novel and well-
known 3rd-party NLP tools used in
biomedical text prosessing.

82

Write an existing java PoS Tagging into UIMA

I We have a java PoS tagger

I The tagger has some parameters/options (model, tagset, encoding,
etc.)

I The tagger given the list of tokens of a sentence returns a list of PoS

I We want to use and existing type system (e.g. opennlp)

83

Wrapper = Analysis Engine

An Analysis Engine has two parts:

I Description (metadata)

I Annotator (code)

84

UIMA Description for my PoS Tagging

I Define the input and output (so we need the type system)

I Parameters (default values, ...)

I Java class that will do the job

(Remember ... We have done that in the programming less introduction)

85

UIMA Description for my PoS Tagging

I Define the input and output (so we need the type system)

I Parameters (default values, ...)

I Java class that will do the job

86

UIMA Annotator for my PoS Tagging

Steps:

I Initialize the PoS tagger (Collect some parameters to create
object,loading model)

I Do the tagging
I Access sentence and token information from UIMA CAS
I Call the tagger with the tokens
I Update/Add the Pos Information to the UIMA CAS

I Free resources

87

UIMA Annotator for my PoS Tagging

I An annotator extends class JCasAnnotator ImplBase

I Initialization must be done by method initialize(UimaContext)

I The annotation process is carried out by the method process(JCas)

I Finalize/Free resources must be done by method destroy()

88

UIMA Annotator for my PoS Tagging

// initilize PosTagger processor

@Override
public void initialize(UimaContext context) {
super.initialize(context);
posModel= (String) context.getConfigParameterValue("model");
posTagset= (String) context.getConfigParameterValue("tagset");
enc= (String) context.getConfigParameterValue("encoding");

...

89

Annotations are stored in Indexes

I The results of the annotators are stored in the CAS as annotations.

I Annotations can be accessed using an Index.

I Obtaining an Iterator that allows you to step through all annotations
of a particular type.

FSIndex sentenceIndex = aJCas.getAnnotationIndex(Sentence.type);

90

Iterators

FSIterator SentenceIter = SentenceIndex.iterator();
while (SentenceIter.hasNext()) {
Sentence Sentence = (Sentence)SentenceIter.next();
//do something

}

91

UIMA Annotator for my PoS Tagging

I subiterator: obtain the Annotations “inside”.

I getCoveredText: obtain the original text covered by the
annotation.

92

UIMA Annotator for my PoS Tagging

public void process(JCas jcas) {
//For every sentence

FSIterator<Annotation> iter sen =
jcas.getAnnotationIndex(Sentence.type).iterator();

while(iter sen.hasNext()) {
Sentence sen = iter sen.next();
//For every Token in a sentence

FSIterator<Annotation> iter token =
jcas.getAnnotationIndex(Token.type).subiterator(sen);

while (iter token.hasNext()) {
Annotation pt = iter token.next();
String wordForm = pt.getCoveredText();
words.add(wordForm);

}
...

93

UIMA Annotator for my PoS Tagging

...
//tag sentence

posTag = posTagger.tagSequence(words);
....

94

UIMA Annotator for my PoS Tagging

// add PoS to token information

int i=0;
iter token = jcas.getAnnotationIndex(tokenType).subiterator(sen);
while(iter token.hasNext()) {

Token pt = (Token) iter token.next();
//set the PoS feature

pt.setPos(posTag[i++]);
}

...

95

Final remarks

Notice that this is a oversimplified example. P.e. Model should be better
defined as a resource, annotation types can be parametrized, ... etc.

96

Glossary
The following slides contain a glossary1 of the most important concepts covered in this
course.

Aggregate Analysis Engine An Analysis Engine made up of multiple subcomponent
Analysis Engines arranged in a flow. The flow can be one of the two
built-in flows, or a custom flow provided by the user.

Analysis Engine A program that analyzes artifacts (e.g. documents) and infers
information about them, and which implements the UIMA Analysis
Engine interface Specification. It does not matter how the program
is built, with what framework or whether or not it contains
component (“sub”) Analysis Engines.

Annotation The association of a metadata, such as a label, with a region of text
(or other type of artifact). For example, the label ‘Person’ associated
with a region of text ‘John Doe’ constitutes an annotation. We say
Person annotates the span of text from X to Y containing exactly
‘John Doe’. An annotation is represented as a special type in a
UIMA type system. It is the type used to record the labeling of
regions of a Sofa.

Annotator A software component that implements the UIMA annotator
interface. Annotators are implemented to produce and record
annotations over regions of an artifact (e.g., text document, audio,
and video).

1source: documentation Apache UIMA.
97

Glossary

Apache UIMA Java Framework A Java-based implementation of the UIMA
architecture. It provides a run-time environment in which developers
can plug in and run their UIMA component implementations and
with which they can build and deploy UIM applications. The
framework is the core part of the Apache UIMA SDK.

Apache UIMA Software Development Kit (SDK) The SDK for which you are now
reading the documentation. The SDK includes the framework plus
additional components such as tooling and examples. Some of the
tooling is Eclipse-based (http://www.eclipse.org/). The Apache
UIMA SDK is being developed at the Apache Incubator.

CAS The UIMA Common Analysis Structure is the primary data structure
which UIMA analysis components use to represent and share analysis
results. It contains:

I The artifact. This is the object being analyzed such as a text
document or audio or video stream. The CAS projects one or
more views of the artifact. Each view is referred to as a Sofa.

I A type system description – indicating the types, subtypes, and
their features.

I Analysis metadata – standoff annotations describing the
artifact or a region of the artifact

I An index repository to support efficient access to and iteration
over the results of analysis.

98

Glossary

CAS Consumer A component that receives each CAS in the collection, usually after
it has been processed by an Analysis Engine. It is responsible for
taking the results from the CAS and using them for some purpose,
perhaps storing selected results into a database, for instance. The
CAS Consumer may also perform collection-level analysis, saving
these results in an application-specific, aggregate data structure.

CAS Processor A component of a Collection Processing Engine (CPE) that takes a
CAS as input and returns a CAS as output. There are two types of
CAS Processors: Analysis Engines and CAS Consumers.

CAS View A CAS Object which shares the base CAS and type system definition
and index specifications, but has a unique index repository and a
particular Sofa. Views are named, and applications and annotators
can dynamically create additional views whenever they are needed.
Annotations are made with respect to one view. Feature structures
can have references to feature structures indexed in other views, as
needed.

CDE The Component Descriptor Editor. This is the Eclipse tool that lets
you conveniently edit the UIMA descriptors.

99

Glossary

Collection Processing Engine (CPE) Performs Collection Processing through the
combination of a Collection Reader, 0 or more Analysis Engines, and
zero or more CAS Consumers. The Collection Processing Manager
(CPM) manages the execution of the engine.

Collection Processing Manager (CPM) The part of the framework that manages the
execution of collection processing, routing CASs from the Collection
Reader to 0 or more Analysis Engines and then to the 0 or more CAS
Consumers. The CPM provides feedback such as performance
statistics and error reporting and supports other features such as
parallelization and error handling.

Collection Reader A component that reads documents from some source, for example
a file system or database. The collection reader initializes a CAS
with this document. Each document is returned as a CAS that may
then be processed by an Analysis Engines. If the task of populating a
CAS from the document is complex, you may use an arbitrarily
complex chain of Analysis Engines and have the last one create and
initialize a new Sofa.

Feature A data member or attribute of a type. Each feature itself has an
associated range type, the type of the value that it can hold. In the
database analogy where types are tables, features are columns. In
the world of structured data types, each feature is a ‘field’, or data
member.

100

Glossary

Flow Controller A component which implements the interfaces needed to specify a
custom flow within an Aggregate Analysis Engine.

Index Data in the CAS can only be retrieved using Indexes. Indexes are
analogous to the indexes that are specified on tables of a database.
Indexes belong to Index Repositories; there is one Repository for
each view of the CAS. Indexes are specified to retrieve instances of
some CAS Type (including its subtypes), and can be optionally
sorted in a user-definable way. For example, all types derived from
the UIMA built-in type uima.tcas.Annotation contain begin and end
features, which mark the begin and end offsets in the text where this
annotation occurs. There is a built-in index of Annotations that
specifies that annotations are retrieved sequentially by sorting first
on the value of the begin feature (ascending) and then by the value
of the end feature (descending). In this case, iterating over the
annotations, one first obtains annotations that come sequentially
first in the text, while favoring longer annotations, in the case where
two annotations start at the same offset. Users can define their own
indexes as well.

101

Glossary

JCas A Java object interface to the contents of the CAS. This interface
use additional generated Java classes, where each type in the CAS is
represented as a Java class with the same name, each feature is
represented with a getter and setter method, and each instance of a
type is represented as a Java object of the corresponding Java class.

PEAR An archive file that packages up a UIMA component with its code,
descriptor files and other resources required to install and run it in
another environment. You can generate PEAR files using utilities
that come with the UIMA SDK.

Primitive Analysis Engine An Analysis Engine that is composed of a single Annotator;
one that has no component (or ‘sub’) Analysis Engines inside of it;
contrast with Aggregate Analysis Engine.

Semantic Search search where the semantic intent of the query is specified using one
or more entity or relation specifiers. For example, one could specify
that they are looking for a person (named) ‘Bush’. Such a query
would then not return results about the kind of bushes that grow in
your garden but rather just persons named Bush.

102

Glossary

Structured Information Items stored in structured resources such as search engine
indices, databases or knowledge bases. The canonical example of
structured information is the database table. Each element of
information in the database is associated with a precisely defined
schema where each table column heading indicates its precise
semantics, defining exactly how the information should be
interpreted by a computer program or end-user.

Subject of Analysis (Sofa) A piece of data (e.g., text document, image, audio
segment, or video segment), which is intended for analysis by UIMA
analysis components. It belongs to a CAS View which has the same
name; there is a one-to-one correspondence between these. There
can be multiple Sofas contained within one CAS, each one
representing a different view of the original artifact – for example, an
audio file could be the original artifact, and also be one Sofa, and
another could be the output of a voice-recognition component,
where the Sofa would be the corresponding text document. Sofas
may be analyzed independently or simultaneously; they all co-exist
within the CAS.

103

Glossary

Type A specification of an object in the CAS used to store the results of
analysis. Types are defined using inheritance, so some types may be
defined purely for the sake of defining other types, and are in this
sense ‘abstract types’ Types usually contain Features, which are
attributes, or properties of the type. A type is roughly equivalent to
a class in an object oriented programming language, or a table in a
database. Instances of types in the CAS may be indexed for retrieval.

Type System A collection of related types. All components that can access the
CAS, including Applications, Analysis Engines, Collection Readers,
Flow Controllers, or CAS Consumers declare the type system that
they use. Type systems are shared across Analysis Engines, allowing
the outputs of one Analysis Engine to be read as input by another
Analysis Engine. A type system is roughly analogous to a set of
related classes in object oriented programming, or a set of related
tables in a database. The type system / type / feature terminology
comes from computational linguistics.

Unstructured Information The canonical example of unstructured information is the
natural language text document. The intended meaning of a
document’s content is only implicit and its precise interpretation by a
computer program requires some degree of analysis to explicate the
document’s semantics. Other examples include audio, video and
images. Contrast with Structured Information.

104

Glossary

UIMA UIMA is an acronym that stands for Unstructured Information
Management Architecture; it is a software architecture which
specifies component interfaces, design patterns and development
roles for creating, describing, discovering, composing and deploying
multi-modal analysis capabilities.

XCAS An XML representation of the CAS. The XCAS can be used for
saving and restoring CASs to and from streams. The UIMA SDK
provides XCAS serialization and de-serialization methods for CASes.
This is an older serialization format and new UIMA code should use
the standard XMI format instead.

XML Metadata Interchange (XMI) An OMG standard for representing object graphs
in XML, which UIMA uses to serialize analysis results from the CAS
to an XML representation. The UIMA SDK provides XMI
serialization and de-serialization methods for CASes.

105

Links

I Freeling http://www.lsi.upc.edu/˜nlp/freeling/

I JULIE Labs http://www.julielab.de

I GATE http://gate.ac.uk

I Living Knowledge Testbed http://livingknowledge-project.eu/)

I NLTK http://www.nltk.org/

I Nooj http://www.nooj4nlp.net/

I OpenNLP http://opennlp.sourceforge.net/

I TANL http://medialab.di.unipi.it/wiki/Tanl/

I UIMA http://uima.apache.org

I UIMA BIONLP http://bionlp-uima.sourceforge.net

I UIMA Component Repository at CMU http://uima.lti.cs.cmu.edu

I UIMA Sandbox http://incubator.apache.org/uima/sandbox.html

I U-Compare http://u-compare.org

106

http://www.lsi.upc.edu/~nlp/freeling/
http://www.julielab.de
http://gate.ac.uk
http://livingknowledge-project.eu/
http://www.nltk.org/
http://www.nooj4nlp.net/
http://opennlp.sourceforge.net/
http://medialab.di.unipi.it/wiki/Tanl/
http://uima.apache.org
http://bionlp-uima.sourceforge.net
http://uima.lti.cs.cmu.edu
http://incubator.apache.org/uima/sandbox.html
http://u-compare.org

	Architectures/Libraries for NLP
	future challenges
	``Common Data Representation'' Based Frames
	API Based Frameworks (Libraries)

	What is UIMA?
	Programless UIMA
	Type System
	Analysis Engine
	Aggregate Analysis Engine
	Collection Processing Engine
	Packaging Modules in UIMA

	GATE
	Practical Tips
	Sandbox
	Repositories
	I want to use my PoS Tagger in UIMA
	UIMA Description for my PoS Tagging
	UIMA Annotator for my PoS Tagging
	Indexes and Iterators
	Glossary
	Links

