Eniversidad de Huelya

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

GUÍA DOCENTE

CURSO 2025-26

GRADO EN INGENIERÍA QUÍMICA INDUSTRIAL

DATOS DE LA ASIGNATURA									
			OS DE EA	ASIGI	IAIONA				
Nombre:									
SIMULACIÓN DE OPERACIONES BÁSICAS									
Denominación en Inglés:									
Simulation of Unit Operations									
Código:	Código: Tipo Docenci					Carácter:	Carácter:		
606210)309	Presencial					Optativa		
Horas:									
			Totales		Presenciales		No Presenciales		
Trabajo Es	stimado		150	60		60 90			
Créditos:									
Grupos Grandes	Grupos Reducidos								
Grupos Grandes	Aula estánda	ar	Laborat	orio	Práctica	as de campo	Aula de informática		
0	0		0			0	6		
Departamentos:				Áreas de Conocimiento:					
ING. QUIM., Q. FISICA Y C. MATERIALES				INGENIERIA QUIMICA					
Curso:				Cuatrimestre					
4º - Cuarto			Segundo cuatrimestre						

DATOS DEL PROFESORADO (*Profesorado coordinador de la asignatura)

Nombre:	E-mail:	Teléfono:	
Maria Jose Martin Alfonso	mariajose.martin@diq.uhu.es	959 217 699	
* Francisco Jose Martinez Boza	martinez@diq.uhu.es	959 219 993	

Datos adicionales del profesorado (Tutorías, Horarios, Despachos, etc...)

Nombre	Correo	Teléfono	Despacho
Martínez Boza, Francisco José	martinez@uhu.es	959219993	PB47
Martín Alfonso, María José	mariajose.martin@diq.uhu.es	959217699	ETSI-PS029

DATOS ESPECÍFICOS DE LA ASIGNATURA

1. Descripción de Contenidos:

1.1 Breve descripción (en Castellano):

Fundamentos de métodos termodinámicos computarizados para la estimación de propiedades fisicoquímicas de componentes puros y mezclas.

Simulación de operaciones de transferencia de materia, intercambio de calor y cantidad de movimiento en estado estacionario. Simulación de operaciones básicas en estado no estacionario.

1.2 Breve descripción (en Inglés):

Fundamentals on computer-aided thermodynamic methods for estimating and correlating properties.

Steady-state and dynamic simulation of heat, mass and momentum transfer.

2. Situación de la asignatura:

2.1 Contexto dentro de la titulación:

Esta asignatura introduce al alumno en el manejo y estudio computarizado de las operaciones de transferencia de materia, calor y cantidad de movimiento, para seguidamente profundizar en el diseño modelado y optimización de procesos químicos, tanto en estado estacionario como dinámico. La asignatura se cursa cuando el alumno conoce los métodos de diseño de operaciones básicas y procesos químicos, complementando ese conocimiento mediante el aprendizaje de los métodos de diseño, modelado y optimización de procesos asistidos por ordenador.

2.2 Recomendaciones

Para cursar la asignatura es recomendable poseer conocimientos básicos de informática a nivel de usuario, conocimientos de las operaciones básicas de la ingeniería, flujo de fluidos, transmisión de calor y equilibrio entre fases, así como lectura comprensiva de inglés técnico.

3. Objetivos (expresados como resultado del aprendizaje)

El objetivo general de este curso es el aprendizaje y entrenamiento en diseño, simulación y optimización, tanto en modo estacionario como dinámico, de las operaciones básicas más comúnmente utilizadas en la industria química, integradas en procesos típicos. El diseño y simulación se realizará con la ayuda de los componentes del paquete de software AspenOne en su versión universitaria.

4. Competencias a adquirir por los estudiantes

4.1 Competencias específicas:

_

4.2 Competencias básicas, generales o transversales:

G01: Capacidad para la resolución de problemas.

G03: Capacidad de organización y planificación.

G04: Capacidad de aplicar los conocimientos en la práctica.

G08: Capacidad de adaptación a nuevas situaciones.

G12: Capacidad para el aprendizaje autónomo y profundo.

G02: Capacidad para tomar decisiones

CT2: Desarrollo de una actitud crítica en relación con la capacidad de análisis y síntesis.

CT4: Capacidad de utilizar las Competencias Informáticas e Informacionales (CI2) en la práctica profesional.

CT3: Desarrollo de una actitud de indagación que permita la revisión y avance permanente del conocimiento.

5. Actividades Formativas y Metodologías Docentes

5.1 Actividades formativas:

- Sesiones prácticas en laboratorios especializados o en aulas de informática
- Actividades Académicamente Dirigidas por el profesorado: seminarios, conferencias, desarrollo de trabajos, debates, tutorías colectivas, actividades de evaluación y autoevaluación....

5.2 Metodologías Docentes:

- Desarrollo de prácticas en laboratorios especializados o aulas de informática en grupos reducidos
- Tutorías individuales o colectivas. Interacción directa profesorado-estudiantes
- Evaluaciones y Exámenes

5.3 Desarrollo y Justificación:

En el desarrollo de este curso se plantearán una serie de casos o problemas para su diseño y

simulación, comenzando por la elaboración del diagrama de flujo,resolviendo el balance de materia, calor y cantidad de movimiento en estado estacionario. Sobre algunos casos se realizaran estudios de análisis de sensibilidad y optimización, así como paso a estado dinámico y control del proceso.

Mediante las sesiones de prácticas en laboratorio de informática especializado, complementadas por las AAD, se adquieren las competencias G01, G02, G03, G04, G08, G12, CT2, CT3 y CT4.

6. Temario Desarrollado

1. Introducción a la simulación de operaciones básicas

- 1.1. Estrategia general de simulación
- 1.2. Planteamiento del problema
- 1.3. Resolución de operaciones básicas y procesos

2. Representación termodinámica de sistemas químicos

- 2.1. Modelos termodinámicos
- 2.2. Cálculo de equilibrio entre fases
- 2.3. Cálculo de propiedades

3. Simulación del transporte de materia y la transmisión de calor

- 3.1. Operaciones de intercambio de calor
- 3.2. Intercambiadores de carcasa y tubos
- 3.3. Diseño y cálculo de conductos y bombas

4. Simulación de separadores en etapa simple y etapa múltiple

- 4.1. Simulación de separadores de varias fases
- 4.2. Absorción de gases y destilación
- 4.3. Extracción

5. Simulación de la reacción química

- 5.1. Reacciones de conversión, equilibrio, paralelas y consecutivas
- 5.2. Reactores en lotes
- 5.3. Reactores de mezcla completa y flujo pistón

6. Simulación dinámica

- 6.1. Procedimiento de cálculo en modo dinámico
- 6.2. Dimensionado del equipamiento, instalación de controladores y paso al modo dinámico
- 6.3. Control básico de intercambiadores de calor, reactores y separadores

7. Bibliografía

7.1 Bibliografía básica:

M.J. Martín y F.J. Martínez. Simulación de Operaciones Básicas. Publicaciones Universidad de Huelva, Huelva 2023.

Haydary, J. Chemical Process Design and Simulation Aspen Plus and Aspen Hysys Applications. 2019. JohnWiley & Sons, Inc.

Gil Chaves, I.D., Guevara López, J.R., García Zapata, J.L. Leguizamón Robayo, A., Rodríguez Niño, G. Process Analysis and Simulation in Chemical Engineering. 2016. Springer International Publishing. Switzerland. https://doi.org/10.1007/978-3-319-14812-0.

7.2 Bibliografía complementaria:

- S. Luque y cols. Simulación y Optimización Avanzadas en La Industria Química y de Procesos: HYSYS. Universidad de Oviedo, Oviedo, 2005.
- N.J. Scenna y cols. Modelado, Simulación y Optimización de Procesos Químicos. Universidad Tecnologica Nacional. Mexico 1999.

8. Sistemas y criterios de evaluación

8.1 Sistemas de evaluación:

- Defensa de Prácticas
- Defensa de Trabajos e Informes Escritos

8.2 Criterios de evaluación relativos a cada convocatoria:

8.2.1 Convocatoria I:

Para superar la asignatura es condición necesaria, pero no suficiente, haber asistido y realizado los ejercicios propuestos como ejemplo en el desarrollo de cada tema.

La evaluación consta de dos partes acumulativas.

- a) Ejercicios complementarios a los ejemplos de cada tema, a realizar en el aula de informática durante las sesiones prácticas. La realización correcta de éstos constituye un máximo de 4 puntos. Evalúa las competencias: G01, G02, G03, G04, G08, G12.
- b) Defensa de trabajos e informes, cuya puntuación máxima son 6 puntos, acumulables a los obtenidos en el apartado a. Evalúa las competencias G08, G12

Se supera la asignatura al conseguir un mínimo de 5 puntos, siempre y cuando se hayan realizado las simulaciones propuestas en los ejemplos de desarrollo de los temas.

8.2.2 Convocatoria II:

Examen teórico/práctico a resolver con ayuda del simulador, que representará el 100% de la calificación de la asignatura. Se supera la asignatura al obtener un mínimo de 50 puntos sobre 100 puntos.

8.2.3 Convocatoria III:

Examen teórico/práctico a resolver con ayuda del simulador, que representará el 100% de la calificación de la asignatura. Se supera la asignatura al obtener un mínimo de 50 puntos sobre 100 puntos.

8.2.4 Convocatoria extraordinaria:

Examen teórico/práctico a resolver con ayuda del simulador, que representará el 100% de la calificación de la asignatura. Se supera la asignatura al obtener un mínimo de 50 puntos sobre 100 puntos.

8.3 Evaluación única final:

8.3.1 Convocatoria I:

Examen teórico/práctico a resolver con ayuda del simulador, que representará el 100% de la calificación de la asignatura. Se supera la asignatura al obtener un mínimo de 50 puntos sobre 100 puntos.

8.3.2 Convocatoria II:

Examen teórico/práctico a resolver con ayuda del simulador, que representará el 100% de la calificación de la asignatura. Se supera la asignatura al obtener un mínimo de 50 puntos sobre 100 puntos.

8.3.3 Convocatoria III:

Examen teórico/práctico a resolver con ayuda del simulador, que representará el 100% de la calificación de la asignatura. Se supera la asignatura al obtener un mínimo de 50 puntos sobre 100 puntos.

8.3.4 Convocatoria Extraordinaria:

Examen teórico/práctico a resolver con ayuda del simulador, que representará el 100% de la calificación de la asignatura. Se supera la asignatura al obtener un mínimo de 50 puntos sobre 100 puntos.

9. Organización docente semanal orientativa:							
F. inicio	Grupos	G. Reducidos				Pruebas y/o	Contenido
semana	Grandes	Aul. Est.	Lab.	P. Camp	Aul. Inf.	act. evaluables	desarrollado
16-02-2026	0	0	0	0	20		T1 / T2
23-02-2026	0	0	0	0	20		T3 / T4
02-03-2026	0	0	0	0	20	AAD	T5 / T6
09-03-2026	0	0	0	0	0		
16-03-2026	0	0	0	0	0		
23-03-2026	0	0	0	0	0		
06-04-2026	0	0	0	0	0		
13-04-2026	0	0	0	0	0		
20-04-2026	0	0	0	0	0		
27-04-2026	0	0	0	0	0		
04-05-2026	0	0	0	0	0		
11-05-2026	0	0	0	0	0		
18-05-2026	0	0	0	0	0		
25-05-2026	0	0	0	0	0		
01-06-2026	0	0	0	0	0		

TOTAL 0 0 0 0 60