Eniversidad de Huelva

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

GUÍA DOCENTE

CURSO 2025-26

GRADO EN INGENIERÍA INFORMÁTICA

DATOS DE LA ASIGNATURA									
Nombre:									
INTERCONEXIÓN DE REDES DE COMPUTADORES									
Denominación en Inglés:									
COMPUTER NETWORKS INTERCONNECTION									
Código:		Tipo Docencia:				Carácter:			
606010	606010213			Presencial			Obligatoria		
Horas:									
		Totales			Presenciales		No Presenciales		
Trabajo Estimado		150			60		90		
Créditos:									
Grupos Grandes	Grupos Reducidos								
	Aula estándar		Laboratorio		Práctica	as de campo	Aula de informática		
4	0		2			0	0		
Departamentos:				Áreas de Conocimiento:					
ING. ELECTRON. DE SIST. INF. Y AUTOMAT.				INGENIERIA DE SISTEMAS Y AUTOMATICA					
Curso:				Cuatrimestre					
3º - Tercero				Primer cuatrimestre					

DATOS DEL PROFESORADO (*Profesorado coordinador de la asignatura)

Nombre:	E-mail:	Teléfono:
* Estefania Cortes Ancos	estefania.cortes@diesia.uhu.es	959 217 642
Claudio Lopez Lopez	claudio.lopez@diesia.uhu.es	

Datos adicionales del profesorado (Tutorías, Horarios, Despachos, etc...)

Claudio López López - claudio.lopez@diesia.uhu.es (ETSI-239)

Estefanía Cortés Ancos - estefania.cortes@diesia.uhu.es (ETSI-228, 959217642)

Horario de clases y tutorías:

http://www.uhu.es/etsi/informacion-academica/informacion-comun-todos-los-titulos/horarios-2/

DATOS ESPECÍFICOS DE LA ASIGNATURA

1. Descripción de Contenidos:

1.1 Breve descripción (en Castellano):

Dispositivos y Protocolos de interconexión de Redes

Protocolos de Red: IP y de Transporte: TCP y UDP. Principales Aplicaciones y protocolos en Internet

Configuración y verificación de redes TCP/IP

Aplicaciones del Router y configuración avanzada

Principales protocolos de enrutamiento: características y configuración

1.2 Breve descripción (en Inglés):

Internetworking Systems and Protocols.

Network and Transport Protocols: IP, UDP and TCP.

Main Internet Protocols and Applications.

TCP/IP network management.

Operation and advance configuration of Routers and Computer Networks.

Routing protocols. Introduction to security principles and practices.

2. Situación de la asignatura:

2.1 Contexto dentro de la titulación:

La asignatura, perteneciente al bloque de enseñanzas de Arquitectura y Redes de Computadores, se imparte en el 1º cuatrimestre del 3º curso del Grado en Ingeniería Informática y avanza en los conocimientos relativos a la interconexión de redes adquiridos en: Fundamentos de Redes de Computadores (2º Grado en Ingeniería Informática) a la vez que prepara para el futuro estudio de las asignaturas Administración y Gestión de Redes (3º curso del Grado en Ingeniería Informática Especialidad Ingeniería de Computadores), Redes Avanzadas (4º curso del Grado en Ingeniería Informática) y Seguridad en Redes Informáticas (4º curso del Grado en Ingeniería Informática).

2.2 Recomendaciones

3. Objetivos (expresados como resultado del aprendizaje)

El objetivo principal es mostrar los conceptos avanzados en el campo de las Redes de Computadores, abordando los siguientes aspectos: Arquitecturas de red, protocolos, dispositivos y configuración avanzada.

Posibilidad de obtener certificación profesional CCNA (Cisco Certified Network Associate), impartida por la Academia Local DIESIA Networking que CISCO tiene en la Universidad de Huelva (http://www.uhu.es/diesianetworking/).

4. Competencias a adquirir por los estudiantes

4.1 Competencias específicas:

CC05: Conocimiento, administración y mantenimiento de sistemas, servicios y aplicaciones informáticas.

CC09: Capacidad de conocer, comprender y evaluar la estructura y arquitectura de los computadores, así como los componentes básicos que los conforman.

CC11: Conocimiento y aplicación de las características, funcionalidades y estructura de los Sistemas Distribuidos, las Redes de Computadores e Internet y diseñar e implementar aplicaciones basadas en ellas.

4.2 Competencias básicas, generales o transversales:

CB2: Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.

CGO: Capacidad de análisis y síntesis: Encontrar, analizar, criticar (razonamiento crítico), relacionar, estructurar y sintetizar información proveniente de diversas fuentes, así como integrar ideas y conocimientos.

CG01: Capacidad de organización y planificación, así como capacidad de gestión de la Información.

CG02: Capacidad de comunicación oral y escrita en el ámbito académico y profesional con especial énfasis, en la redacción de documentación técnica.

CG03: Capacidad para la resolución de problemas.

CG04: Capacidad para tomar decisiones basadas en criterios objetivos (datos experimentales, científicos o de simulación disponibles) así como capacidad de argumentar y justificar lógicamente dichas decisiones, sabiendo aceptar otros puntos de vista.

CT2: Desarrollo de una actitud crítica en relación con la capacidad de análisis y síntesis.

CT3: Desarrollo de una actitud de indagación que permita la revisión y avance permanente del conocimiento.

5. Actividades Formativas y Metodologías Docentes

5.1 Actividades formativas:

- Sesiones de Teoría sobre los contenidos del Programa
- Sesiones de Resolución de Problemas
- Sesiones Prácticas en Laboratorios Especializados o en Aulas de Informática

- Actividades Académicamente Dirigidas por el Profesorado: seminarios, conferencias, desarrollo de trabajos, debates, tutorías colectivas, actividades de evaluación y autoevaluación...
- Trabajo Individual/Autónomo del Estudiante

5.2 Metodologías Docentes:

- Desarrollo de Prácticas en Laboratorios Especializados o Aulas de Informática en grupos reducidos
- Clase Magistral Participativa
- Resolución de Problemas y Ejercicios Prácticos
- Evaluaciones y Exámenes

5.3 Desarrollo y Justificación:

Clases teóricas semanales de 3 horas en las que se explicarán los contenidos temáticos Sesiones de planteamientos de problemas, resolución de problemas por parte del alumno y exposición final sobre la pizarra. Actividades prácticas semanales de 1,5 h en el laboratorio orientadas a la aplicación de lo aprendido en teoría y al desarrollo de nuevas capacidades y técnicas habituales en el mundo de las redes. Elaboración de trabajos individuales o en grupos reducidos, exposición y debates acerca de la temática de los mismos.

Posibilidad de obtener certificación CCNA de CISCO

6. Temario Desarrollado

TEMA 1: FUNDAMENTOS DE REDES

Clasificación. Topologías. Interconexión de Redes. Proveedores Servicios de Internet: ISP. Puntos neutros de Interconexión. Arquitecturas de Red. Protocolos de comunicación. Proceso de encapsulación. Tipos de servicio. Calidad de servicio.

TEMA 2: REDES CONMUTADAS

Entornos conmutados. Seguridad: administración e implementación. VLAN: Segmentación, implementación, seguridad y diseño. Enrutamiento entre VLANs.

TEMA 3: EL NIVEL DE RED EN INTERNET. PROTOCOLO IPv4

Protocolo IPv4. Direccionamiento. Subredes. Protocolos de control y resolución de direcciones. Fragmentación. NAT.

TEMA 4: EL NIVEL DE RED EN INTERNET. PROTOCOLO IPv6

Protocolo IPv6. Direccionamiento. Estrategias IPv4-IPv6.

TEMA 5: EL NIVEL DE RED EN INTERNET. NAT

Funcionamiento de Network Address Translation (NAT). NAT estático, dinámico y por puertos. Mapeo y redirección de puertos. NAT64.

TEMA 6: EL NIVEL DE RED EN INTERNET. PROTOCOLOS DE ENRUTAMIENTO.

Conceptos. Protocolos. Sistemas Autónomos. Sumarización de rutas.

TEMA 7: EL NIVEL DE TRANSPORTE EN INTERNET

Aspectos generales del nivel de transporte. Protocolo UDP. Multiplexación. Intercambio de datos. Protocolo TCP: Multiplexación. Conexión/Desconexión. Intercambio de datos y control de fluio. Casos de baja eficiencia en TCP. Control de congestión. Opciones de TCP.

TEMA 8: EL NIVEL DE APLICACIÓN EN INTERNET

Configuración dinámica de hosts: DHCP. Resolución de nombres: Protocolo DNS. Correo Electrónico: Protocolos SMTP, POP3 e IMAP. Otras aplicaciones: HTTP, FTP, Telnet y SSH.

TEMA 9: SEGURIDAD EN INTERNET

Seguridad informática: concepto y objetivos. Áreas de seguridad. Seguridad de perímetro: Dispositivos de protección. Cortafuegos. Seguridad en el canal: Criptografía simétrica y asimétrica; Protocolos seguros; Redes Privadas Virtuales y Seguridad de acceso: Autenticación; Firma digital; Infraestructura de clave pública; Certificados; Autoridades certificadoras.

7. Bibliografía

7.1 Bibliografía básica:

Apuntes de la asignatura en moodle

Materiales certificación: https://www.netacad.com

7.2 Bibliografía complementaria:

- Redes de computadores. Tanembaum. Prentice Hall
- Comunicaciones y redes de computadores. Stallings. Prentice Hall
- Academia Networking de Cisco System. Academia Cisco System. Prentice Hall
- TCP/IP. Ray. Prentice Hall
- Fundamentos de seguridad en redes. Stallings. Prentice Hall
- Transmisión de datos y redes de computadores. Garcia Teodoro, Díaz Verdejo y López Soler. Prentice Hall
- Seguridad en redes telemáticas. Carracedo Gallardo. Mc Graw Hill
- Redes de computadoras y arquitecturas de comunicaciones. Supuestos prácticos. Barcia Vazquez, Fernandez del Val, Frutos Cid. Pearson.
- **CCNA Data Center**. Introducing Cisco Data Center Networking. Study Guide for Exam 640-911. T. Lammle, J. Swatz, Sybex, (John Wiley & Sons, Inc).

8. Sistemas y criterios de evaluación

8.1 Sistemas de evaluación:

- Examen de Teoría/Problemas
- Defensa de Prácticas
- Seguimiento Individual del Estudiante

8.2 Criterios de evaluación relativos a cada convocatoria:

8.2.1 Convocatoria I:

Examen teoría/problemas: 60 % (CC05, CC09, CC11, CB2, CG0, G01, G03).

Defensa de prácticas de laboratorio: 30% (CC05, CC09, CC11, CB2, CG0, G02, G03, G04). Superación de desafíos de laboratorio.

Seguimiento individual del estudiante: 10 % (CT2, CT3). Resolución individual de problemas, cuestiones y desafíos.

Para el cálculo de la nota final, el/la alumno/a deberá conseguir al menos un 5 sobre 10 tanto en el examen teoría/problemas como en la defensa de prácticas. La asistencia a prácticas es obligatoria.

La nota final se calcularía:

Nota final = Examen Teoría/problemas (60%)+ Defensa prácticas (30%) + Seguimiento del estudiante (10%)

Para la obtención de la matrícula de honor, el estudiante deberá obtener un 10 en su nota final. En el caso de que haya más estudiantes con esta calificación y no sea posible otorgarlas todas debido al número de estudiantes matriculados, éstas se otorgarán a aquellos que consigan mejor calificación en la resolución de una prueba adicional cuya fecha de celebración se acordará entre los estudiantes implicados.

8.2.2 Convocatoria II:

Examen teoría/problemas: 60 % (CC05, CC09, CC11, CB2, CG0, G01, G03).

Defensa de prácticas de laboratorio: 30% (CC05, CC09, CC11, CB2, CG0, G02, G03, G04). Superación de desafíos de laboratorio.

Seguimiento individual del estudiante: 10 % (CT2, CT3). Resolución individual de problemas, cuestiones y desafíos.

Para el cálculo de la nota final, el/la alumno/a deberá conseguir al menos un 5 sobre 10 tanto en el examen teoría/problemas como en la defensa de prácticas. La asistencia a prácticas es obligatoria.

La nota final se calcularía:

Nota final = Examen Teoría/problemas (60%)+ Defensa prácticas (30%) + Seguimiento del estudiante (10%)

Para la obtención de la matrícula de honor, el estudiante deberá obtener un 10 en su nota final. En el caso de que haya más estudiantes con esta calificación y no sea posible otorgarlas todas debido al número de estudiantes matriculados, éstas se otorgarán a aquellos que consigan mejor calificación en la resolución de una prueba adicional cuya fecha de celebración se acordará entre los estudiantes implicados.

8.2.3 Convocatoria III:

Examen teoría/problemas: 60 % (CC05, CC09, CC11, CB2, CG0, G01, G03).

Defensa de prácticas de laboratorio: 30% (CC05, CC09, CC11, CB2, CG0, G02, G03, G04). Superación de desafíos de laboratorio.

Seguimiento individual del estudiante: 10 % (CT2, CT3). Resolución individual de problemas, cuestiones y desafíos.

Para el cálculo de la nota final, el/la alumno/a deberá conseguir al menos un 5 sobre 10 tanto en el examen teoría/problemas como en la defensa de prácticas. La asistencia a prácticas es obligatoria.

La nota final se calcularía:

Nota final = Examen Teoría/problemas (60%)+ Defensa prácticas (30%) + Seguimiento del estudiante (10%)

Para la obtención de la matrícula de honor, el estudiante deberá obtener un 10 en su nota final. En el caso de que haya más estudiantes con esta calificación y no sea posible otorgarlas todas debido al número de estudiantes matriculados, éstas se otorgarán a aquellos que consigan mejor calificación en la resolución de una prueba adicional cuya fecha de celebración se acordará entre los estudiantes implicados.

8.2.4 Convocatoria extraordinaria:

Examen teoría/problemas: 60 % (CC05, CC09, CC11, CB2, CG0, G01, G03).

Defensa de prácticas de laboratorio: 30% (CC05, CC09, CC11, CB2, CG0, G02, G03, G04). Superación de desafíos de laboratorio.

Seguimiento individual del estudiante: 10 % (CT2, CT3). Resolución individual de problemas, cuestiones y desafíos.

Para el cálculo de la nota final, el/la alumno/a deberá conseguir al menos un 5 sobre 10 tanto en el examen teoría/problemas como en la defensa de prácticas. La asistencia a prácticas es obligatoria.

La nota final se calcularía:

Nota final = Examen Teoría/problemas (60%)+ Defensa prácticas (30%) + Seguimiento del estudiante (10%)

Para la obtención de la matrícula de honor, el estudiante deberá obtener un 10 en su nota final. En el caso de que haya más estudiantes con esta calificación y no sea posible otorgarlas todas debido al número de estudiantes matriculados, éstas se otorgarán a aquellos que consigan mejor calificación en la resolución de una prueba adicional cuya fecha de celebración se acordará entre

los estudiantes implicados.

8.3 Evaluación única final:

8.3.1 Convocatoria I:

Según el Reglamento de Evaluación de la Universidad de Huelva, los alumnos que quieran acogerse a esta modalidad de evaluación deberán notificarlo (vía correo electrónico de la UHU) dentro de las dos primeras semanas de impartición de la asignatura, o en las dos semanas siguientes a su matriculación si esta se ha producido con posterioridad.

Examen teoría/problemas: 60 % (CC05, CC09, CC11, CB2, CG0, G01, G03).

Seguimiento individual del estudiante: 10% (CT2, CT3) se llevará a cabo a través de preguntas específicas durante el examen.

Defensa de prácticas de laboratorio: 30% (CC05, CC09, CC11, CB2, CG0, G02, G03, G04). Superación de desafío en el laboratorio que englobe la totalidad de las prácticas.

Para el cálculo de la nota final, el/la alumno/a deberá conseguir al menos un 5 sobre 10 tanto en el examen como en la defensa de prácticas.

La nota final se calcularía:

Nota final = Examen Teoría/problemas (60%)+ Seguimiento del estudiante (10%) + Defensa prácticas (30%)

Para la obtención de la matrícula de honor, el estudiante deberá obtener un 10 en su nota final. En el caso de que haya más estudiantes con esta calificación y no sea posible otorgarlas todas debido al número de estudiantes matriculados, éstas se otorgarán a aquellos que consigan mejor calificación en la resolución de una prueba adicional cuya fecha de celebración se acordará entre los estudiantes implicados.

8.3.2 Convocatoria II:

Examen teoría/problemas: 60 % (CC05, CC09, CC11, CB2, CG0, G01, G03).

Seguimiento individual del estudiante: 10% (CT2, CT3) se llevará a cabo a través de preguntas específicas durante el examen.

Defensa de prácticas de laboratorio: 30% (CC05, CC09, CC11, CB2, CG0, G02, G03, G04). Superación de desafío en el laboratorio que englobe la totalidad de las prácticas.

Para el cálculo de la nota final, el/la alumno/a deberá conseguir al menos un 5 sobre 10 tanto en el examen como en la defensa de prácticas.

La nota final se calcularía:

Nota final = Examen Teoría/problemas (60%)+ Seguimiento del estudiante (10%) + Defensa prácticas (30%)

Para la obtención de la matrícula de honor, el estudiante deberá obtener un 10 en su nota final. En el caso de que haya más estudiantes con esta calificación y no sea posible otorgarlas todas debido

al número de estudiantes matriculados, éstas se otorgarán a aquellos que consigan mejor calificación en la resolución de una prueba adicional cuya fecha de celebración se acordará entre los estudiantes implicados.

8.3.3 Convocatoria III:

Examen teoría/problemas: 60 % (CC05, CC09, CC11, CB2, CG0, G01, G03).

Seguimiento individual del estudiante: 10% (CT2, CT3) se llevará a cabo a través de preguntas específicas durante el examen.

Defensa de prácticas de laboratorio: 30% (CC05, CC09, CC11, CB2, CG0, G02, G03, G04). Superación de desafío en el laboratorio que englobe la totalidad de las prácticas.

Para el cálculo de la nota final, el/la alumno/a deberá conseguir al menos un 5 sobre 10 tanto en el examen como en la defensa de prácticas.

La nota final se calcularía:

Nota final = Examen Teoría/problemas (60%)+ Seguimiento del estudiante (10%) + Defensa prácticas (30%)

Para la obtención de la matrícula de honor, el estudiante deberá obtener un 10 en su nota final. En el caso de que haya más estudiantes con esta calificación y no sea posible otorgarlas todas debido al número de estudiantes matriculados, éstas se otorgarán a aquellos que consigan mejor calificación en la resolución de una prueba adicional cuya fecha de celebración se acordará entre los estudiantes implicados.

8.3.4 Convocatoria Extraordinaria:

Examen teoría/problemas: 60 % (CC05, CC09, CC11, CB2, CG0, G01, G03).

Seguimiento individual del estudiante: 10% (CT2, CT3) se llevará a cabo a través de preguntas específicas durante el examen.

Defensa de prácticas de laboratorio: 30% (CC05, CC09, CC11, CB2, CG0, G02, G03, G04). Superación de desafío en el laboratorio que englobe la totalidad de las prácticas.

Para el cálculo de la nota final, el/la alumno/a deberá conseguir al menos un 5 sobre 10 tanto en el examen como en la defensa de prácticas.

La nota final se calcularía:

Nota final = Examen Teoría/problemas (60%)+ Seguimiento del estudiante (10%) + Defensa prácticas (30%)

Para la obtención de la matrícula de honor, el estudiante deberá obtener un 10 en su nota final. En el caso de que haya más estudiantes con esta calificación y no sea posible otorgarlas todas debido al número de estudiantes matriculados, éstas se otorgarán a aquellos que consigan mejor calificación en la resolución de una prueba adicional cuya fecha de celebración se acordará entre los estudiantes implicados.

Esta guía no incluye organización docente semanal orientativa