Eniversidad de Huelva

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

GUIA DOCENTE

CURSO 2023-24

DOBLE GRADO EN ING. MECÁNICA E ING. EN EXPLOT. DE MINAS Y RR. EE.

DATOS DE LA ASIGNATURA Nombre: CIENCIA Y TECNOLOGÍA DE LOS MATERIALES Denominación en Inglés: MATERIALS SCIENCE AND TECHNOLOGY Código: **Tipo Docencia:** Carácter: 609021211 Presencial Obligatoria Horas: **Totales Presenciales No Presenciales** Trabajo Estimado 225 90 135 **Créditos: Grupos Reducidos Grupos Grandes** Prácticas de campo Aula de informática Aula estándar Laboratorio 6.21 0.79 0.6 1.4 0 Áreas de Conocimiento: **Departamentos:** CIENCIA DE LOS MATERIALES E INGENIERIA METALURG. ING. QUIM., Q. FISICA Y C. MATERIALES Curso: **Cuatrimestre** 2º - Segundo Segundo cuatrimestre

DATOS DEL PROFESORADO (*Profesorado coordinador de la asignatura)

Nombre:	E-mail:	Teléfono:
* Maria Dolores Medrano Corona	dolores.medrano@dqcm.uhu.es	959 217 458

Datos adicionales del profesorado (Tutorías, Horarios, Despachos, etc...)

Nombre: Mª Dolores Medrano Corona

E-Mail: dolores.medrano@dqcm.uhu.es

Despacho: ETP-268

DATOS ESPECÍFICOS DE LA ASIGNATURA

1. Descripción de Contenidos:

1.1 Breve descripción (en Castellano):

Tipos de materiales. Estructuras ideales de los distintos materiales. Aleaciones. Defectos de la estructura. Fenómenos de deslizamiento. Difusión. Transformaciones de fase. Transformaciones en estado sólido. Diagramas de fase. Fenómenos de inequilibrio. Tratamientos térmicos. Propiedades de los materiales. Procesado e inspección y selección de materiales.

1.2 Breve descripción (en Inglés):

Types of materials. Ideal structures of different materials. Alloys. Defects in the structure. Slip phenomena. Diffusion processes. Phase transformations. Solid state transformations. Phase diagrams. Non-equilibrium phenomena. Material properties. Heat treatments. Synthesis and processing.

2. Situación de la asignatura:

2.1 Contexto dentro de la titulación:

Esta asignatura se encuentra ubicada en el segundo cuatrimestre de segundo curso, donde el alumno ya ha cursado asignaturas básicas u obligatorias fundamentales (química) para el buen entendimiento de ésta. Además, se sitúa de tal forma que sirve como base a asignaturas de especificación, donde es importante tener una buena base de la estructura y propiedades de determinados materiales. La parte de transformación y procesado de esto, completarán su formación básica como Ingenieros de Minas.

2.2 Recomendaciones

Es aconsejable haber cursado las asignaturas fundamentales de Química, física y matemáticas.

3. Objetivos (resultado del aprendizaje, y/o habilidades o destrezas y conocimientos):

El Graduado de Ingeniería en Explotación de Minas y Recursos Energéticos precisa del conocimiento de los materiales que forman parte de las instalaciones mineras, así como el procesado y el comportamiento de los mismos en la puesta en servicio, ya que una selección o utilización inadecuada puede tener consecuencias en su comportamiento. Para adquirir formación en este campo, se requieren conocimientos sobre:

- Estructura de los materiales

- Propiedades, relacionándolas con la estructura
- Ensayos de determinación de las propiedades
- Interpretación de diagramas y tratamientos térmicos
- Principales grupos de materiales, procesado y aplicaciones: materiales metálicos, cerámicos, polímeros y materiales compuestos

Se trata de que los alumnos conozcan la relación que existe entre las propiedades de un material y su microestructura y el procesado. Asimismo, se pretende que conozcan los principales tipos de materiales y sus características comunes. En concreto:

- Conocimiento de la estructura interna, a nivel atómico, de los principales tipos de materiales, es decir, materiales metálicos, cerámicos, poliméricos y compuestos.
- Se estudiarán los fundamentos de las transformaciones entre los distintos estados que pueden presentar los materiales. En particular, se empleará como herramienta los diagramas de equilibrio. Se estudiarán casos seleccionados de materiales industriales.
- Establecer las relaciones de la estructura interna y el estado de los materiales con las propiedades mecánicas, eléctricas, térmicas, magnéticas y ópticas de los mismos.
- Distintos grupos de materiales, principales formas de procesado y su puesta en servicio:
- Abordar, describir y profundizar, ahora desde un punto de vista aplicado, en los conocimientos básicos relacionados con la interdependencia entre la estructura de los materiales, las rutas de obtención y procesado, y las propiedades que los hacen interesantes y útiles para obtener un rendimiento óptimo bajo condiciones de servicio.
- Concienciar al estudiante sobre la relevancia de la formación e investigación en materiales, a la hora de diseñar y desarrollar productos y componentes industrialmente competitivos, tanto desde el punto de vista de prestaciones y funcionalidad como en términos económicos y sociales, incluyendo su impacto medioambiental.
- Proporcionar al estudiante conocimientos básicos para la selección de materiales considerando su comportamiento estructural en servicio: fractura, fatiga, termofluencia, corrosión, desgaste, etc.
- Formación básica relacionada con el conocimiento y manejo de las normas estandarizadas de clasificación y ensayos mecánicos de los materiales (control de calidad en el sector industrial, I+D+i en empresas, universidades, centros tecnológicos y de investigación).
- Inculcar a los estudiantes la importancia del equilibrio entre principios científicos e ingenieriles, mediante el análisis y la comprensión de la adecuación existente entre requerimientos operativos de diversas aplicaciones tecnológicas y la relación tripartita estructura-procesado-propiedades adscrita a los materiales empleados en ellas.

Se incluye el comportamiento en servicio y frente a la corrosión, para completar la asignatura.

4. Competencias a adquirir por los estudiantes

4.1 Competencias específicas:

C05: Capacidad para conocer, comprender y utilizar los principios y tecnología de materiales.

4.2 Competencias básicas, generales o transversales:

CB1: Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.

CB5: Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.

CG01: Capacidad para la resolución de problemas.

CG03: Capacidad de organización y planificación.

CG04: Capacidad de aplicar los conocimientos en la práctica.

CG07: Capacidad de análisis y síntesis.

CG17: Capacidad para el razonamiento crítico.

TC2: Desarrollo de una actitud crítica en relación con la capacidad de análisis y síntesis.

TC6: Promover, respetar y velar por los derechos humanos, la igualdad sin discriminación por razón de nacimiento, raza, sexo, religión, opinión u otra circunstancia personal o social, los valores democráticos, la igualdad social y el sostenimiento medioambiental.

TC4: Capacidad de utilizar las Competencias Informáticas e Informacionales (CI2) en la práctica profesional.

5. Actividades Formativas y Metodologías Docentes

5.1 Actividades formativas:

- Sesiones de Teoría sobre los contenidos del Programa.
- Sesiones de Resolución de Problemas.
- Sesiones Prácticas en Laboratorios Especializados o en Aulas de Informática.
- Sesiones de Campo de aproximación a la realidad Industrial.
- Actividades Académicamente Dirigidas por el Profesorado: seminarios, conferencias, desarrollo de trabajos, debates, tutorías colectivas, actividades de evaluación y autoevaluación.....

- Trabajo Individual/Autónomo del Estudiante.

5.2 Metodologías Docentes:

- Clase Magistral Participativa.
- Tutorías Individuales o Colectivas. Interacción directa profesorado-estudiantes.
- Planteamiento, Realización, Tutorización y Presentación de Trabajos.
- Evaluaciones y Exámenes.

5.3 Desarrollo y Justificación:

El esquema docente diseñado para esta asignatura pretende equilibrar el desarrollo de los aspectos teóricos, con su aplicación práctica a través de la resolución de ejercicios y prácticas de laboratorio.

Sesiones Académicas de Teoría: consisten en clases magistrales en grupos grandes donde se impartirá la base teórica de la asignatura y se expondrán ejemplos aclaratorios de la misma. Las sesiones serán de aproximadamente una hora y media y se irán intercalando con las sesiones de problemas a lo largo del curso, de manera que una vez finalizada una unidad didáctica con sus correspondientes sesiones académicas de teoría, se realizarán sesiones de problemas. La metodología usada para impartir la teoría y los ejemplos aclaratorios será la exposición mediante presentaciones, transparencias y uso de pizarra. El profesor podrá solicitar la participación activa del alumno mediante preguntas rápidas, teniendo en cuenta los alumnos que más participen a la hora de evaluar.

Sesiones Dirigidas de Problemas: consisten en la realización de problemas relacionados con los conceptos de la asignatura. Para ello el grupo grande se dividirá en grupos reducidos de alumnos. Se pretende potenciar la capacidad de análisis y resolución de problemas que se puedan presentar a la hora del estudio de los materiales y sus propiedades, mediante cálculos manuales. Las sesiones serán de 2 horas y habrá 4 sesiones.

Sesiones de Prácticas: consisten en la realización en grupos reducidos de dos sesiones de 2 horas en el aula de informática y dos sesiones de 5 horas en laboratorio. Se pretende que el alumno adquiera conocimientos de carácter más práctico que los adquiridos en las sesiones de teoría y problemas, si bien relacionados con los mismos. Al final de cada práctica cada grupo de alumnos de prácticas deberá entregar un informe de la práctica realizada donde se refleje el trabajo realizado tanto de forma previa como en el laboratorio.

Realización de pruebas parciales evaluables: A lo largo del curso se realizarán 4 pruebas evaluables. Se dividirán en cuestionarios de conceptos teóricos y problemas semejantes a los que se encuentran a disposición de los alumnos. Los cuestionarios de conceptos teóricos se realizarán para determinar si el alumno ha sido capaz de conseguir los objetivos a nivel de conocimientos necesarios para superar la asignatura. Las pruebas de problemas determinarán si el alumno ha sido capaz de adquirir la habilidad necesaria en la resolución de problemas tipo de la asignatura.

Tutoría especializada: El alumno dispondrá de 6 horas por semana de tutorías a lo largo de todo el cuatrimestre, donde asistirá con su grupo correspondiente o de forma individual para la resolución

de dudas. En ellas se pretende ver la evolución del alumno a lo largo del curso para una evaluación continuada del mismo.

Como ayuda al aprendizaje el profesor y alumnos dispondrán de:

- Pizarra.
- Presentaciones en ordenador.
- Colección de problemas editados electrónicamente.
- Documentación técnica proporcionada por el profesor.

6. Temario Desarrollado

BLOQUE I (15 HORAS)

Tema 1 - LA ESCALA ATÓMICA DE LOS MATERIALES METÁLICOS, 4 horas

Introducción a la Ciencia y Tecnología de los Materiales. Estructuras cristalinas de los metales. Notación cristalográfica. Estructuras cristalinas. Un nuevo enfoque: apilamiento de planos. Características de la estructura cristalina. Estructura CCI. Estructura CCC. Estructura HC. Soluciones sólidas metálicas. Vidrios metálicos.

Tema 2 - MATERIALES CERÁMICOS, SU PROCESADO Y COMPORTAMIENTO EN SERVICIO. 7 horas

Compuestos iónicos. Estructuras cristalinas sencillas. Estructuras cristalinas algo más complejas. Vidrios cerámicos. Vidrios, cerámicas tradicionales y avanzadas, su procesado. Comportamiento en servicio de materiales cerámicos.

Tema 3 - IMPERFECCIONES CRISTALINAS, 4 horas

Clasificación de los defectos. Defectos volumétricos. Defectos superficiales. Defectos lineales. Dislocaciones. Defectos puntuales. Difusión.

BLOQUE II (14 HORAS)

Tema 4 - TRANSFORMACIONES DE FASES. 7 horas

Fase y transformación de fase. «Pasaporte» termodinámico. El carácter invariante. Etapas de una transformación de fase. Nucleación homogénea. Nucleación heterogénea. Crecimiento. Cinética de una transformación de fase. Solidificación vítrea. Transformaciones eutéctica y eutectoide. Transformaciones de precipitación. Transformaciones peritéctica y peritectoide. Transformaciones polimórficas. Transformaciones martensíticas. Recristalización.

Tema 5 - DIAGRAMAS DE EQUILIBRIO. 7 horas

Diagramas de Fase o de Equilibrio. Diagramas binarios de tipo I. Diagramas binarios de tipo II. Diagramas binarios de tipo IV.

BLOQUE III (13 HORAS)

Tema 6.- ALEACIONES METÁLICAS, SU PROCESADO Y COMPORTAMIENTO EN SERVICIO 7 horas

El diagrama metaestable Fe-Fe3Cy el estable Fe-C. Principales Microestructuras. Aceros y sus aleaciones. Clasificación de las aleaciones férreas. Elementos aleante y formadores de carburos. Aceros inoxidables. Aceros inoxidables auteníticos. Aceros Inoxidables ferríticos. Aceros Inoxidables Martensíticos. Aceros inoxidables Duplex. Fundiciones Férreas. Clasificación de las fundiciones férreas. Conformado por moldeo y colada continua. Conformado por deformación plástica. Pulvimetalúrgia Métodos de unión en metales.

Tema 7.- TRATAMIENTOS TÉRMICOS 4 horas

Tratamientos térmicos Básicos. Clasificación de los tratamientos térmicos. Procesos térmicos no endurecedores. Procesos térmicos endurecedores, ensayo de Jominy. Curvas C de transformación. Curvas de transformación isotérmica y curvas de transformación continua. Tratamientos termoquímicos.

Tema 8. ALEACIONES NO FERREAS. 2 horas

Aleaciones no férreas. Aleaciones del Aluminio. Aleaciones del Cobre. Aleaciones del Titanio. Otras aleaciones

BLOQUE IV (21 HORAS)

Tema 9 - PROPIEDADES MECÁNICAS DE LOS MATERIALES, 3,5 horas

Descripción macroscópica del comportamiento elástico. Descripción microscópica del comportamiento elástico. Ensayos y curva de esfuerzo-deformación. Descripción macroscópica del comportamiento plástico. Descripción microscópica del comportamiento plástico. Ductilidad y Fragilidad. Fractura. Fatiga. Termofluencia. Mecanismos de Endurecimiento

Tema 10.- POLIMEROS, SU PROCESADO Y COMPORTAMIENTO EN SERVICIO 6 horas.

Definiciones. La polimerización. Tipos de materiales poliméricos Escalas de fabricación y tipo de aplicación. Comportamiento mecánico y frente a temperatura. Procesos de obtención de polímeros. Conformado de polímeros. Defectos de piezas inyectadas. Naturaleza viscoelástica. Comportamiento de tensofisuración.

Tema 11.- MATERIALES COMPUESTOS, SU PROCESADO Y COMPORTAMIENTO EN SERVICIO 4 horas

Definiciones. Clasificación de los materiales compuestos. Refuerzos. Comportamiento mecánico. Tipos de fracturas en materiales compuestos

Tema 12 - PROPIEDADES ELÉCTRICAS DE LOS MATERIALES. 2 horas

La conductividad eléctrica. Clasificación eléctrica de los materiales. El modelo de bandas de energía. Conducción en conductores. Superconductividad. Conducción en semiconductores. Conducción en aislantes

Tema 13 - PROPIEDADES MAGNÉTICAS DE LOS MATERIALES. 2 horas

Conceptos básicos. Campo magnético en el interior de un material. Tipos de magnetismo. Estructura de dominios. Curva de histéresis. Materiales magnéticos de interés tecnológico

Tema 14 - PROPIEDADES TÉRMICAS DE LOS MATERIALES. 2 horas

Un modelo elemental de las vibraciones térmicas. Dilatación térmica. Capacidad térmica. Conducción térmica.

Tema 15- COMPORTAMIENTO A CORROSIÓN. 2 horas

Corrosión de materiales metálicos. Aspectos elementales de electroquímica. Formas de la corrosión

PRÁCTICAS

- Estructuras cristalinas (INFORMÁTICA)
- Preparación metalográfica. (LABORATORIO)
- El diagrama de equilibrio de los aceros. Estructuras de aceros. Estructuras de solidificación y transformaciones en estado sólido (INFORMÁTICA)
- Ensayo de propiedades mecánicas (LABORATORIO)
- Tratamientos térmicos (LABORATORIO)
- Ensayos de defectos (LABORATORIO)
- Ensayos de acritud (LABORATORIO)

7. Bibliografía

7.1 Bibliografía básica:

- · Ciencia e Ingeniería de los Materiales. J.M. MONTES, F.G. CUEVAS, J. CINTAS, Editorial PARANINFO (2014). ISBN: 9788428330176
- · Introducción a la Ciencia e Ingeniería de los Materiales. Volumen I y II. W.D. CALLISTER, Jr., EDITORIAL REVERTÉ, S.A., Barcelona (1996). ISBN: 84-291-7253-8, 84-291-7254-8
- · Introducción a la Ciencia de Materiales para Ingenieros. J.F. SHACKELFORD, EDITORIAL PEARSON EDUCACIÓN, Madrid (2010). ISBN: 978-84-8322-659-9
- · Ciencias de Materiales: Selección y Diseño. PAT L. MANGONON. PRENTICE HALL. México (2001).ISBN: 970-26-0027-8
- · Ciencia e Ingeniería de Materiales. W.F. SMITH, McGRAW-HILL S.A, Madrid (2004). ISBN: 84-481-2956-3
- · Ciencia e Ingeniería de los Materiales. D.R. ASKELAND, EDITORIAL PARANINFO, Madrid (2001). ISBN: 84-9732-016-6
- · Tecnología de Materiales. J.A. PUÉRTOLAS, R. RÍOS, M. CASTRO Y J. M. CASALS, Madrid (2009). Editorial Síntesis. ISBN: 978-84-975665-3-7

7.2 Bibliografía complementaria:

8. Sistemas y criterios de evaluación

8.1 Sistemas de evaluación:

- Examen de Teoría/Problemas.
- Defensa de Prácticas.
- Examen de Prácticas.
- Defensa de Trabajos e Informes Escritos.
- Seguimiento Individual del Estudiante.

8.2 Criterios de evaluación relativos a cada convocatoria:

8.2.1 Convocatoria I:

La evaluación se hará en base a los siguientes criterios:

El **examen teórico-práctico** supondrá el 80% de la nota final. Competencias C05, CB1, CB5, CG01, CG17

- Al final de cada bloque se realizará una prueba de conocimientos, servirá para la puntuación final (siempre que se supere un umbral de 5 puntos sobre 10) y eliminación del bloque para el examen de teoría-problemas (superadas al menos 2 de las 4 pruebas de conocimientos).
- En la fecha establecida por la Escuela Técnica Superior de Ingeniería, se realizará el examen de teoría-problemas, el cual supondrá el 80% de la nota global. En caso de un alumno que se examine de solo alguna parte de los bloques, por tener alguno superado, su puntuación será la media aritmética de la puntuación de cada bloque.

Tanto los exámenes como las pruebas de conocimientos, estarán constituidos por una parte de teoría y otra de problemas, debiendo superarse un umbral de 1.75 puntos (sobre 5) en cada parte para poder sumar ambas y llegar a aprobar el examen).

Asistencia a prácticas (**obligatoria**) y la entrega de un informe final en el formato establecido por el profesor, supondrá el 10%. En el informe se valorará tanto el contenido como la presentación de este. La entrega de informes en un formato o por un cauce diferente al establecido por el profesor y/o fuera de la fecha límite de entrega serán condiciones para considerar un informe como no apto. Mediante las prácticas de laboratorio se adquieren las competencias: CG01, CG03, CG04, CG07, CT2, CT4, CT6.

El seguimiento individual supondrá el 10% que **únicamente sumarán si se supera los 4 puntos mediante examen teórico-práctico (Incluidos los controles de conocimiento y el examen final).** Mediante el seguimiento individual se adquieren las competencias: C05, CG07, CG17, CT2, CT6.

Tanto en los exámenes como en las actividades académicas dirigidas y las prácticas, se valorará positivamente la claridad de los conceptos teóricos, la interpretación de los resultados, la brevedad y claridad en la exposición, la habilidad en la aplicación de los diversos métodos prácticos y la precisión en los cálculos.

NOTA: Para aprobar la asignatura, además de obtener más de 5 puntos sobre 10 en la calificación final, es necesario cumplir dos condiciones:

- obtener 4 puntos sobre 10 mediante examen teórico-práctico
- realizar las prácticas de laboratorio de la asignatura

8.2.2 Convocatoria II:

La evaluación se hará en base a los siguientes criterios:

El **examen teórico-práctico** supondrá el 80% de la nota final. Competencias C05, CB1, CB5, CG01, CG17

- Al final de cada bloque se realizará una prueba de conocimientos, servirá para la puntuación final (siempre que se supere un umbral e 5 puntos sobre 10) y eliminación del bloque para el examen de teoría-problemas (superadas al menos 2 de las 4 pruebas de conocimientos).
- En la fecha establecida por la Escuela Técnica Superior de Ingeniería, se realizará el examen de teoría-problemas, el cual supondrá el 80% de la nota global. En caso de un alumno que se examine de solo alguna parte de los bloques, por tener alguno superado, su puntuación será la media aritmética de la puntuación de cada bloque.

Tanto los exámenes como las pruebas de conocimientos, estarán constituidos por una parte de teoría y otra de problemas, debiendo superarse un umbral de 1.75 puntos (sobre 5) en cada parte para poder sumar ambas y llegar a aprobar el examen).

Asistencia a prácticas (**obligatoria**) y la entrega de un informe final en el formato establecido por el profesor, supondrá el 10%. En el informe se valorará tanto el contenido como la presentación de este. La entrega de informes en un formato o por un cauce diferente al establecido por el profesor y/o fuera de la fecha límite de entrega serán condiciones para considerar un informe como no apto. Mediante las prácticas de laboratorio se adquieren las competencias: CG01, CG03, CG04, CG07, CT2, CT4, CT6.

El seguimiento individual supondrá el 10% que **únicamente sumarán si se supera los 4 puntos mediante examen teórico-práctico (Incluidos los controles de conocimiento y el examen final).** Mediante el seguimiento individual se adquieren las competencias: C05, CG07, CG17, CT2, CT6.

Tanto en los exámenes como en las actividades académicas dirigidas y las prácticas, se valorará positivamente la claridad de los conceptos teóricos, la interpretación de los resultados, la brevedad y claridad en la exposición, la habilidad en la aplicación de los diversos métodos prácticos y la precisión en los cálculos.

NOTA: Para aprobar la asignatura, además de obtener más de 5 puntos sobre 10 en la calificación final, es necesario cumplir dos condiciones:

- obtener 4 puntos sobre 10 mediante examen teórico-práctico
- realizar las prácticas de laboratorio de la asignatura

8.2.3 Convocatoria III:

Este examen teórico-práctico, supondrá el 90% de la asignatura. Este examen, que contemplará las

competencias CB1, CB5, G01, y G17, estará constituido por una parte de teoría y otra de problemas, debiendo superarse un umbral de 1.75 puntos (sobre 5) en cada parte para poder llegar a aprobar el examen. En este entrarán los contenidos impartidos en las clases teóricas y los impartidos en los grupos reducidos.

El examen de las prácticas de laboratorio supondrá hasta un 10% y versará sobre los contenidos impartidos en las prácticas de laboratorio durante el curso y su correspondiente materia teórica. Con él se asegurarán las competencias G01, G04, G05, G07, G17 y T02.

NOTA: Para aprobar la asignatura, es necesario obtener más de 5 puntos sobre 10 en el examen

8.2.4 Convocatoria extraordinaria:

Este examen teórico-práctico, supondrá el 90% de la asignatura. Este examen, que contemplará las competencias CB1, CB5, G01, y G17, estará constituido por una parte de teoría y otra de problemas, debiendo superarse un umbral de 1.75 puntos (sobre 5) en cada parte para poder llegar a aprobar el examen. En este entrarán los contenidos impartidos en las clases teóricas y los impartidos en los grupos reducidos.

El examen de las prácticas de laboratorio supondrá hasta un 10% y versará sobre los contenidos impartidos en las prácticas de laboratorio durante el curso y su correspondiente materia teórica. Con él se asegurarán las competencias G01, G04, G05, G07, G17 y T02.

NOTA: Para aprobar la asignatura, es necesario obtener más de 5 puntos sobre 10 en el examen

8.3 Evaluación única final:

8.3.1 Convocatoria I:

El examen teórico- práctico, que contemplará las competencias CB1, CB5, G01, y G17, estará constituido por una parte de teoría y otra de problemas, debiendo superarse un umbral de 1.75 puntos (sobre 5) en cada parte para poder llegar a aprobar el examen. En este entrarán los contenidos impartidos en las clases teóricas y los impartidos en los grupos reducidos. Este examen supondrá el 90% de la asignatura. El examen de las prácticas de laboratorio supondrá hasta un 10% y versará sobre los contenidos impartidos en las prácticas de laboratorio durante el curso y su correspondiente materia teórica. Con él se asegurarán las competencias G01, G04, G05, G07, G17 y T02.

Para poder acogerse a esta modalidad de evaluación el alumno deberá solicitarla las dos primeras semanas desde la iniciación de la asignatura. El alumno debe presentar dicha solicitud por correo electrónico al coordinador de la asignatura. Esto implicará la renuncia expresa a la evaluación continua, sin posibilidad de que el estudiante pueda cambiar de sistema de evaluación. No obstante, podrán cambiar de sistema, por causas excepcionales, sobrevenidas y justificadas (motivos laborales, enfermedad o discapacidad), pudiendo solicitar la evaluación única final fuera de plazo, bajo el mismo procedimiento administrativo.

NOTA: Para aprobar la asignatura, es necesario obtener más de 5 puntos sobre 10 en el examen

8.3.2 Convocatoria II:

Este examen teórico-práctico, supondrá el 90% de la asignatura. Este examen, que contemplará las competencias CB1, CB5, G01, y G17, estará constituido por una parte de teoría y otra de problemas, debiendo superarse un umbral de 1.75 puntos (sobre 5) en cada parte para poder llegar a aprobar el examen. En este entrarán los contenidos impartidos en las clases teóricas y los impartidos en los grupos reducidos.

El examen de las prácticas de laboratorio supondrá hasta un 10% y versará sobre los contenidos impartidos en las prácticas de laboratorio durante el curso y su correspondiente materia teórica. Con él se asegurarán las competencias G01, G04, G05, G07, G17 y T02.

NOTA: Para aprobar la asignatura, es necesario obtener más de 5 puntos sobre 10 en el examen

8.3.3 Convocatoria III:

Este examen teórico-práctico, supondrá el 90% de la asignatura. Este examen, que contemplará las competencias CB1, CB5, G01, y G17, estará constituido por una parte de teoría y otra de problemas, debiendo superarse un umbral de 1.75 puntos (sobre 5) en cada parte para poder llegar a aprobar el examen. En este entrarán los contenidos impartidos en las clases teóricas y los impartidos en los grupos reducidos.

El examen de las prácticas de laboratorio supondrá hasta un 10% y versará sobre los contenidos impartidos en las prácticas de laboratorio durante el curso y su correspondiente materia teórica. Con él se asegurarán las competencias G01, G04, G05, G07, G17 y T02.

NOTA: Para aprobar la asignatura, es necesario obtener más de 5 puntos sobre 10 en el examen

8.3.4 Convocatoria Extraordinaria:

Este examen teórico-práctico, supondrá el 90% de la asignatura. Este examen, que contemplará las competencias CB1, CB5, G01, y G17, estará constituido por una parte de teoría y otra de problemas, debiendo superarse un umbral de 1.75 puntos (sobre 5) en cada parte para poder llegar a aprobar el examen. En este entrarán los contenidos impartidos en las clases teóricas y los impartidos en los grupos reducidos.

El examen de las prácticas de laboratorio supondrá hasta un 10% y versará sobre los contenidos impartidos en las prácticas de laboratorio durante el curso y su correspondiente materia teórica. Con él se asegurarán las competencias G01, G04, G05, G07, G17 y T02.

NOTA: Para aprobar la asignatura, es necesario obtener más de 5 puntos sobre 10 en el examen

9. Organización docente semanal orientativa:									
Grupos		G. Reducidos				Pruebas y/o	Contenido		
Fecha	Grandes	Aul. Est.	Lab.	P. Camp	Aul. Inf.	act. evaluables	desarrollado		
19-02-2024	4.14	0	0	0	0		TEMA 1		
26-02-2024	4.14	0	0	0	0		TEMA 2		
04-03-2024	4.14	0	2	0	0	ESTRUCTURAS CRISTALINAS	TEMA 2 Y TEMA 3		
11-03-2024	4.14	0	0	0	0		TEMA 3 Y TEMA 4		
18-03-2024	4.14	0	0	0	0		TEMA 4		
01-04-2024	4.14	2	0	0	0	GRUPO REDUCIDO	TEMA 4 Y TEMA 5		
08-04-2024	4.14	0	0	0	0		TEMA 5		
15-04-2024	4.14	0	0	0	0		ТЕМА 6		
22-04-2024	4.14	2	0	0	0	GRUPO REDUCIDO	TEMA 6 Y TEMA 7		
29-04-2024	4.14	0	0	6	0	САМРО	TEMA 7 Y TEMA 8		
06-05-2024	4.14	1.9	0	0	0	GRUPO REDUCIDO	TEMA 9 Y TEMA 10		
13-05-2024	4.14	0	12	0	0	LABORATORIO	TEMA 10		
20-05-2024	4.14	0	0	0	0		TEMA 11		
27-05-2024	4.14	0	0	0	0		TEMA 12 Y TEMA 13		
03-06-2024	4.14	2	0	0	0	GRUPO REDUCIDO	TEMA 14 Y TEMA 15		

TOTAL 62.1 7.9 14 6 0