

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA GUIA DOCENTE

CURSO 2015/2016

Grado en Ingeniería Química Industrial

	DATOS DE LA ASIGNATURA						
Nombre:							
Simulación de Operaciones Básicas							
Denominación en inglés:							
Simulation of Unit Operations							
Código:	Carácter:						
	60621	10309		Optativo			
Horas:							
		Totales	s	Presenciales		No presenciales	
Trabajo estimado:		150		60			90
Créditos:							
		Grupos reducidos					
Grupos grandes	Δ	Aula estándar	Labor	atorio	Prácticas de campo		Aula de informática
0		0	()	0		6
Departamentos:				Áreas de Conocimiento:			
Ingeniería Química, Química Física y Química Orgánica				Ingeniería Química			
Curso: Cuatrimestre:							
4º - Cuarto				Segundo cuatrimestre			

DATOS DE LOS PROFESORES							
Nombre:	E-Mail:	Teléfono:	Despacho:				
*Martínez Boza, Francisco José	martinez@uhu.es	959219993	P4-N6-01				

*Profesor coordinador de la asignatura

DATOS ESPECÍFICOS DE LA ASIGNATURA

1. Descripción de contenidos

1.1. Breve descripción (en castellano):

Fundamentos de métodos termodinámicos computerizados para la estimación de propiedades fisicoquímicas de componentes puros y mezclas.

Simulación de operaciones de transferencia de materia, intercambio de calor y cantidad de movimiento en estado estacionario. Simulación de operaciones básicas en estado no estacionario

1.2. Breve descripción (en inglés):

Fundamentals on computer-aided thermodynamic methods for estimating and correlating properties. Steady-state and dynamic simulation of heat, mass and momentum transfer.

2. Situación de la asignatura

2.1. Contexto dentro de la titulación:

Esta asignatura introduce al alumno en el manejo y estudio computerizado de las operaciones de transferencia de materia, calor y cantidad de movimiento, para seguidamente profundizar en el diseño modelado y optimización de procesos químicos, tanto en estado estacionario como dinámico. La asignatura se cursa cuando el alumno conoce los métodos de diseño de operaciones básicas y procesos químicos, complementando ese conocimiento mediante el aprendizaje de los métodos de diseño, modelado y optimización de procesos asistidos por ordenador.

2.2. Recomendaciones:

Para cursar la asignatura es recomendable poseer conocimientos básicos de informática a nivel de usuario, conocimientos de las operaciones básicas de la ingeniería, flujo de fluidos, transmisión de calor y equilibrio entre fases, así como lectura comprensiva de inglés técnico.

3. Objetivos (Expresados como resultados del aprendizaje):

El objetivo general de este curso es el aprendizaje y entrenamiento en diseño, simulación y optimización, tanto en modo estacionario como dinámico, de las operaciones básicas más comúnmente utilizadas en la industria química, integradas en procesos típicos. El diseño y simulación se realizará con la ayuda de los componentes del paquete de software AspenOne en su versión universitaria.

4. Competencias a adquirir por los estudiantes

4.1. Competencias específicas:

4.2. Competencias básicas, generales o transversales:

- G01: Capacidad para la resolución de problemas
- G02: Capacidad para tomar de decisiones
- G03: Capacidad de organización y planificación
- G04: Capacidad de aplicar los conocimientos en la práctica
- G08: Capacidad de adaptación a nuevas situaciones
- G12: Capacidad para el aprendizaje autónomo y profundo

5. Actividades Formativas y Metodologías Docentes

5.1. Actividades formativas:

- Sesiones Prácticas en Laboratorios Especializados o en Aulas de Informática.
- Actividades Académicamente Dirigidas por el Profesorado: seminarios, conferencias, desarrollo de trabajos, debates, tutorías colectivas, actividades de evaluación y autoevaluación.

5.2. Metologías docentes:

- Desarrollo de Prácticas en Laboratorios Especializados o Aulas de Informática en grupos reducidos.
- Tutorías Individuales o Colectivas. Interacción directa profesorado-estudiantes.
- Evaluaciones y Exámenes.

5.3. Desarrollo y justificación:

En el desarrollo de este curso se plantearán una serie de casos o problemas para su diseño y simulación, comenzando por la elaboración del diagrama de flujo y resolviendo el balance de materia, calor y cantidad de movimiento en estado estacionario. Sobre algunos casos se realizaran estudios de análisis de sensibilidad y optimización, así como paso a estado dinámico y control del proceso.

6. Temario desarrollado:

- 1. Introducción a la simulación de procesos
- a. Estrategia general de simulación
- b. Planteamiento de ecuaciones
- c. Estrategias de resolución
- d. Simuladores comercias
- 2. Representación termodinámica de sistemas químicos
- a. Modelos termodinámicos
- b. Cálculos de equilibrio entre fases
- c. Corrientes y cálculo de propiedades
- 3. Caracterización de fluidos complejos
- a. Componentes y seudocomponentes
- b. Procedimientos de caracterización
- c. Calculo de propiedades de mezclas complejas
- 4. Separadores
- a. Simulación de separadores de varias fases
- b. Operaciones lógicas
- c. Manejo de compresores y válvulas
- d. Ciclo simple y ciclo doble de compresión
- 5. Intercambiadores de calor
- a. Operaciones de intercambio de calor
- b. Intercambiador de carcasa y tubos
- c. Evaporador de efecto múltiple
- 6. Simulación de la reacción química
- a. Modelos de conversión y equilibrio en reacciones
- b. Simulación de combustiones y reactores de conversión
- 7. Operaciones de separación en etapa múltiple. Columnas
- a. Especificaciones y grados de libertad
- b. Columnas de rectificación, absorción y extracción
- c. Secuencias de separadores
- 8. Transporte de fluidos. Gaseoductos y oleoductos
- a. Diseño y cálculo de conductos y bombas
- b. Simulación de redes de conductos
- 9. Simulación dinámica
- a. Descripción y procedimientos de cálculo en modo dinámico
- b. Realización de la simulación estacionaria y paso al modo dinámico
- c. Dimensión del equipamiento e instalación de controladores
- d. Control de temperatura y presión
- e. Manejo de eventos

7. Bibliografía

7.1. Bibliografía básica:

- 1. Introducción a la simulación de procesos
- a. Estrategia general de simulación
- b. Planteamiento de ecuaciones
- c. Estrategias de resolución
- d. Simuladores comercias
- 2. Representación termodinámica de sistemas químicos
- a. Modelos termodinámicos
- b. Cálculos de equilibrio entre fases
- c. Corrientes y cálculo de propiedades
- 3. Caracterización de fluidos complejos
- a. Componentes y seudocomponentes
- b. Procedimientos de caracterización
- c. Calculo de propiedades de mezclas complejas
- 4. Separadores
- a. Simulación de separadores de varias fases
- b. Operaciones lógicas
- c. Manejo de compresores y válvulas
- d. Ciclo simple y ciclo doble de compresión
- 5. Intercambiadores de calor
- a. Operaciones de intercambio de calor
- b. Intercambiador de carcasa y tubos
- c. Evaporador de efecto múltiple
- 6. Simulación de la reacción química
- a. Modelos de conversión y equilibrio en reacciones
- b. Simulación de combustiones y reactores de conversión
- 7. Operaciones de separación en etapa múltiple. Columnas
- a. Especificaciones y grados de libertad
- b. Columnas de rectificación, absorción y extracción
- c. Secuencias de separadores
- 8. Transporte de fluidos. Gaseoductos y oleoductos
- a. Diseño y cálculo de conductos y bombas
- b. Simulación de redes de conductos
- 9. Simulación dinámica
- a. Descripción y procedimientos de cálculo en modo dinámico
- b. Realización de la simulación estacionaria y paso al modo dinámico
- c. Dimensión del equipamiento e instalación de controladores
- d. Control de temperatura y presión
- e. Manejo de eventos

7.2. Bibliografía complementaria:

- R. Schefflan. Teach yourself the basics of Aspen Plus. John Wiley & Sons, Singapure 2001.
- S. Luque y cols. Simulación y Optimización Ávanzadas en La Industria Química y de Procesos: HYSYS. Universidad de Oviedo, Oviedo, 2005.
- NJ Scenna y cols. Modelado, Simulación y Optimización de Procesos Químicos. Universidad Tecnologica Nacional. Mexico 1999
- VH Martínez y cols. Simulación de Procesos en Ingeniería Química. Plaza y Valdez. México 2002.

8. Sistemas y criterios de evaluación.

8.1. Sistemas de evaluación:

- Defensa de Prácticas
- Defensa de Trabajos e Informes Escritos

8.2. Criterios de evaluación y calificación:

Para superar la asignatura es condición necesaria, pero no suficiente, haber asistido y realizado los ejercicios propuestos como ejemplo en el desarrollo de cada tema.

La evaluación consta de dos partes acumulativas.

a) Ejercicios complementarios a los ejemplos de cada tema, a realizar en el aula de informática durante las sesiones prácticas. La realización correcta de éstos constituye un máximo de 6 puntos.

Evalúa las competencias: G01, G02, G03, G04, G08, G12.

b) Defensa de trabajos e informes, cuya puntuación máxima son 4 puntos, acumulables a los obtenidos en el apartado a. Se supera la asignatura al conseguir un mínimo de 5 puntos, siempre y cuando se hayan realizado las simulaciones propuestas en los ejemplos de desarrollo de los temas.

9. Organización docente semanal orientativa:							
		82.	E JOS	N ANDS	atica jetos	SHOP BINDS	
	anas	තු ^{දදු}	Segnal of	Segrifical,	Segricio Co	Prichas v/o	
Ser.	Light Gun	GLIP!	ys Gubril	o Curr	ago Curco	Pruebas y/o actividades evaluables	Contenido desarrollado
#1	0	0	0	0	0		
#2	0	0	0	0	0		
#3	0	0	20	0	0		T1-3
#4	0	0	20	0	0		T4-6
#5	0	0	20	0	0	AAD	T7-9
#6	0	0	0	0	0		
#7	0	0	0	0	0		
#8	0	0	0	0	0		
#9	0	0	0	0	0		
#10	0	0	0	0	0		
#11	0	0	0	0	0		
#12	0	0	0	0	0		
#13	0	0	0	0	0		
#14	0	0	0	0	0		
#15	0	0	0	0	0		
	0	0	60	0	0		