

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA GUIA DOCENTE

CURSO 2015/2016

Grado en Ingeniería Eléctrica

DATOS DE LA ASIGNATURA								
Nombre:								
Ciencia de los Materiales								
Denominación en inglés:								
Materials Science								
Código:				Carácter:				
	606310204				Obligatorio			
Horas:								
		Totales	3	Presenciales		No presenciales		
Trabajo estimado:		150		60			90	
Créditos:								
		Grupos reducidos						
Grupos grandes	Α	Aula estándar	Labor	atorio Prácticas de car		mpo	Aula de informática	
4.14		0.9	0.56		0		0.4	
Departamentos:				Áreas de Conocimiento:				
Química y Ciencia de los Materiales				Ciencias de los Materiales e Ingeniería Metalúrgica				
Curso:	Cuatrimestre:							
2º - Segundo				Primer cuatrimestre				

DATOS DE LOS PROFESORES							
Nombre:	E-Mail:	Teléfono:	Despacho:				
A contratar							
*Francisco P. Gomez Cuevas	fgcuevas@dqcm.uhu.es	959217448	VRPB-06				
M ^a Dolores Medrano	dolores.medrano@dqcm.uh u.es	959217413	VRPB-13				

*Profesor coordinador de la asignatura

Consultar los horarios de la asignatura

DATOS ESPECÍFICOS DE LA ASIGNATURA

1. Descripción de contenidos

1.1. Breve descripción (en castellano):

Tipos de materiales. Estructuras ideales de los distintos materiales. Aleaciones. Defectos de la estructura. Fenómenos de deslizamiento. Difusión. Transformaciones de fase. Transformaciones en estado sólido. Diagramas de fase. Fenómenos de inequilibrio. Propiedades de los materiales. Tratamientos térmicos. Síntesis y procesado.

1.2. Breve descripción (en inglés):

Types of materials. Ideal structures of the different materials. Alloys. Defects in the crystalline structure. Slip phenomena. Diffusion processes. Phase transformations. Solid state transformations. Phase diagrams. Non-equilibrium phenomena. Materials properties. Heat treatments. Synthesis and processing.

2. Situación de la asignatura

2.1. Contexto dentro de la titulación:

Esta asignatura se encuentra dentro del primer cuatrimestre del segundo curso. Se pretende que sea base de asignaturas posteriores donde es importante conocer la relación entre estructura y propiedades de los distintos materiales. Hoy en día, donde la evolución tecnológica y el mercado pone a disposición del ingeniero el uso de distintos materiales, es imprescindible que cualquier ingeniero sea capaz de seleccionar el material más adecuado para cada aplicación.

2.2. Recomendaciones:

Es importante tener un conocimiento previo de química, física y matemáticas.

3. Objetivos (Expresados como resultados del aprendizaje):

El Graduado en Ingeniería Eléctrica precisa del conocimiento de los materiales que forman parte de las instalaciones industriales, ya que una selección o utilización inadecuada puede tener consecuencias en su comportamiento. Para adquirir formación en este campo, se requieren conocimientos sobre:

- Estructura de los materiales
- Propiedades, relacionándolas con la estructura
- Ensayos de determinación de las propiedades
- Interpretación de diagramas y tratamientos térmicos

Se trata de que los alumnos conozcan la relación que existe entre las propiedades de un material y su microestructura y el procesado. Asimismo, se pretende que conozcan los principales tipos de materiales y sus características comunes. En concreto:

- Conocimiento de la estructura interna, a nivel atómico, de los principales tipos de materiales, es decir, materiales metálicos, cerámicos, poliméricos y compuestos.
- Se estudiarán los fundamentos de las transformaciones entre los distintos estados que pueden presentar los materiales. En particular, se empleará como herramienta los diagramas de equilibrio. Se estudiarán casos seleccionados de materiales industriales.
- Establecer las relaciones de la estructura interna y el estado de los materiales con las propiedades mecánicas, eléctricas, magnéticas y térmicas de los mismos.

Se incluye el comportamiento en servicio y frente a la corrosión, para completar la asignatura.

4. Competencias a adquirir por los estudiantes

4.1. Competencias específicas:

 C03: Conocimientos de los fundamentos de ciencia, tecnología y química de materiales. Comprender la relación entre la microestructura, la síntesis o procesado y las propiedades de los materiales

4.2. Competencias básicas, generales o transversales:

- CB1: Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio
- CB5: Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía
- G01: Capacidad para la resolución de problemas
- G04: Capacidad de aplicar los conocimientos en la práctica
- G05: Capacidad para trabajar en equipo
- G07: Capacidad de análisis y síntesis
- G17: Capacidad para el razonamiento crítico
 T02: Conocimiento y perfeccionamiento en el ámbito de las TIC's

5. Actividades Formativas y Metodologías Docentes

5.1. Actividades formativas:

- Sesiones de Teoría sobre los contenidos del Programa.
- Sesiones de Resolución de Problemas.
- Sesiones Prácticas en Laboratorios Especializados o en Aulas de Informática.

5.2. Metologías docentes:

- · Clase Magistral Participativa.
- Desarrollo de Prácticas en Laboratorios Especializados o Aulas de Informática en grupos reducidos.
- Resolución de Problemas y Ejercicios Prácticos.
- Tutorías Individuales o Colectivas. Interacción directa profesorado-estudiantes.
- · Evaluaciones y Exámenes.

5.3. Desarrollo y justificación:

El esquema docente diseñado para esta asignatura pretende equilibrar el desarrollo de los aspectos teóricos, con su aplicación práctica a través de la resolución de ejercicios y prácticas de laboratorio.

Sesiones Académicas de Teoría: consisten en clases magistrales en grupos grandes donde se impartirá la base teórica de la asignatura y se expondrán ejemplos aclaratorios de la misma. Las sesiones serán de aproximadamente una hora y media y se irán intercalando en las mismas resolución de problemas a lo largo del curso, de manera que una vez finalizada una unidad didáctica se realizarán los correspondientes problemas.

La metodología usada para impartir la teoría y los ejemplos aclaratorios será la exposición mediante presentaciones, transparencias y uso de pizarra. El profesor podrá solicitar la participación activa del alumno mediante preguntas rápidas, teniendo en cuenta los alumnos que más participen a la hora de evaluar.

Sesiones Dirigidas de Problemas: consisten en la realización de problemas relacionados con los conceptos de la asignatura. Para ello el grupo grande se dividirá en grupos reducidos de alumnos. Se pretende potenciar la capacidad de análisis y resolución de problemas que se puedan presentar a la hora del estudio de los materiales y sus propiedades. Las sesiones serán de 1,30 horas y habrá 6 sesiones. Cada una de ellas constará de dos fases, de aproximadamente 30 minutos la primera y 60 minutos la segunda. Primero el profesor explicará las bases para la realización de ese tipo de ejercicios, en segundo lugar, los alumnos, divididos en pequeños grupos de no más de 5 componentes, resolverán uno o varios problemas relacionados con la unidades didácticas dadas en teorías, haciendo uso de los apuntes de clase o cualquier otro material de referencia. Serán los propios alumnos con la supervisión del profesor los que se corrijan entre los distintos grupos los ejercicios

Los alumnos dispondrán desde el principio del curso de un compendio de problemas para resolver. Los que no sean resueltos en las sesiones de aula pueden ser resueltos por los alumnos de forma voluntaria y las soluciones propuestas por ellos podrán ser comprobadas haciendo uso de las horas de tutorías.

Sesiones de Prácticas: consisten en la realización (obligatoria) en grupos reducidos de dos sesiones de 2 horas en el aula de informática y tres sesiones de 2 horas en laboratorio. Se pretende que el alumno adquiera conocimientos de carácter más práctico que los adquiridos en las sesiones de teoría y problemas, si bien relacionados con los mismos. Al final de cada práctica cada alumno o grupo de alumnos de prácticas deberá entregar un informe de la práctica realizada donde se refleje el trabajo realizado tanto de forma previa o posterior como en el laboratorio.

Realización de pruebas parciales evaluables: A lo largo del curso se realizarán 2 pruebas evaluables. Se dividirán en cuestionarios de conceptos teóricos y problemas semejantes a los que se encuentran a disposición de los alumnos. Los cuestionarios de conceptos teóricos se realizarán para determinar si el alumno ha sido capaz de conseguir los objetivos a nivel de conocimientos necesarios para superar la asignatura. Las pruebas de problemas determinarán si el alumno ha sido capaz de adquirir la habilidad necesaria en la resolución de problemas tipo de la asignatura.

Tutoría especializada: El alumno dispondrá de 6 horas por semana de tutorías a lo largo de todo el curso, donde podrá asistir con su grupo correspondiente o de forma individual para la resolución de dudas. En ellas se pretende ver la evolución del alumno a lo largo del curso para una evaluación continuada del mismo.

Como ayuda al aprendizaje el profesor y alumnos dispondrán de:

- Pizarra.
- Presentaciones en ordenador.
- Colección de problemas y libro de teoría.
- Documentación técnica proporcionada por el profesor.

6. Temario desarrollado:

BLOQUE I 15.5 HORAS

Tema 1 - INTRODUCCIÓN. 1.5 horas

Un poco de historia: los materiales y el hombre. Ciencia e Ingeniería de los Materiales. Propiedad y estructura. Clasificación de los materiales.

Tema 2 - ESTRUCTURA ÍNTIMA DE LOS MATERIALES. 2 horas

Las fuerzas interatómicas. Enlaces y tipos de materiales. Orden y desorden. Celdilla elemental y sistemas cristalinos. Notación cristalográfica. Características de una estructura cristalina.

Tema 3 - LA ESCALA ATÓMICA DE LOS MATERIALES METÁLICOS. 3 horas

Estructuras cristalinas de los metales. Un nuevo enfoque: apilamiento de planos. Deformabilidad y estructura cristalina. Soluciones sólidas metálicas. Vidrios metálicos.

Tema 4 - LA ESCALA ATÓMICA DE LOS MATERIALES CERÁMICOS. 3 horas

Estructuras cristalinas sencillas. Estructuras cristalinas algo más complejas. Estructuras cristalinas muy complejas: los silicatos. Vidrios cerámicos.

Tema 5 - LA ESCALA ATÓMICA DE LOS MATERIALES POLIMÉRICOS. 3 horas

La polimerización. Tipos de materiales poliméricos.

Tema 6 - IMPERFECCIONES CRISTALINAS. 3 horas

Clasificación de los defectos. Defectos volumétricos. Defectos superficiales. Defectos lineales. Dislocaciones. Defectos puntuales. Difusión.

BLOQUE II 14 HORAS

Tema 7 - TRANSFORMACIONES DE FASES. 3 horas

Fase y transformación de fase. «Pasaporte» termodinámico. El carácter invariante. Etapas de una transformación de fase. Nucleación homogénea. Nucleación heterogénea. Crecimiento. Cinética de una transformación de fase. Solidificación vítrea.

Tema 8 - TRANSFORMACIONES DE FASES MULTICOMPONENTES. 4 horas

Transformaciones eutéctica y eutectoide. Transformaciones de precipitación. Transformaciones peritéctica y peritectoide. Transformaciones polimórficas. Transformaciones martensíticas. Recristalización.

Tema 9 - DIAGRAMAS DE EQUILIBRIO. 7 horas

Diagramas binarios de tipo I. Diagramas binarios de tipo II. Diagramas binarios de tipo IV. El diagrama metaestable Fe-Fe3C: aceros. Tratamientos térmicos básicos. Principales microestructuras de los aceros.

BLOQUE III 12 HORAS

Tema 10 - PROPIEDADES MECÁNICAS DE LOS MATERIALES. 3.5 horas

Descripción macroscópica del comportamiento elástico. Descripción microscópica del comportamiento elástico. Ensayos y curva de esfuerzo-deformación. Descripción macroscópica del comportamiento plástico. Descripción microscópica del comportamiento plástico. Termofluencia. Fractura. Fatiga.

Tema 11 - PROPIEDADES ELÉCTRICAS DE LOS MATERIALES. 2.5 horas

La conductividad eléctrica. Clasificación eléctrica de los materiales. El modelo de bandas de energía. Conducción en conductores. Superconductividad. Conducción en semiconductores. Conducción en aislantes.

Tema 12 - PROPIEDADES MAGNÉTICAS DE LOS MATERIALES. 2 horas

Conceptos básicos. Campo magnético en el interior de un material. Tipos de magnetismo. Estructura de dominios. Curva de histéresis. Materiales magnéticos de interés tecnológico.

Tema 13 - PROPIEDADES TÉRMICAS DE LOS MATERIALES. 2 horas

Un modelo elemental de las vibraciones térmicas. Dilatación térmica. Capacidad térmica. Conducción térmica.

Tema 14.- COMPORTAMIENTO A CORROSIÓN. 2 horas

Corrosión de materiales metálicos. Aspectos elementales de electroquímica. Formas de la corrosión.

PRÁCTICAS

- Estructuras cristalinas (INFORMÁTICA)
- Preparación metalográfica. (LABORATORIO)
- El diagrama de equilibrio de los aceros. Estructuras de aceros. (INFORMÁTICA)
- Ensayo de propiedades mecánicas (LABORATORIO)
- Ensayos de defectos (LABORATORIO)

7. Bibliografía

7.1. Bibliografía básica:

- · Ciencia e Ingeniería de los Materiales. J.M. MONTES, F.G. CUEVAS, J. CINTAS, Editorial PARANINFO (2014). ISBN: 9788428330176
- · Introducción a la Ciencia e Ingeniería de los Materiales. Volumen I y II. W.D. CALLISTER, Jr., EDITORIAL REVERTÉ, S.A., Barcelona (1996). ISBN: 84-291-7253-8, 84-291-7254-8
- · Introducción a la Ciencia de Materiales para Ingenieros. J.F. SHACKELFORD, EDITORIAL PEARSON EDUCACIÓN, Madrid (2010). ISBN: 978-84-8322-659-9
- · Ciencias de Materiales: Selección y Diseño. PAT L. MANGONON. PRENTICE HALL. México (2001).ISBN: 970-26-0027-8
- · Ciencia e Ingeniería de Materiales. W.F. SMITH, McGRAW-HILL S.A, Madrid (2004). ISBN: 84-481-2956-3
- · Ciencia e Ingeniería de los Materiales. D.R. ASKELAND, EDITORIAL PARANINFO, Madrid (2001). ISBN: 84-9732-016-6

7.2. Bibliografía complementaria:

Introdución a la Metalurgia física. Sidney H. Avner. Ediciones del Castillo. SA. Depósito legal M.21.454-1972 Materiales. Estructura, Propiedades y Aplicaciones. Jose A. de Saja Sáez, Miguel A. Rodríguez Pérez, M. Luz Rodríguez Méndez Editorial Paraninfo. ISBN: 84-9732-346-7

8. Sistemas y criterios de evaluación.

8.1. Sistemas de evaluación:

- Examen de teoría/problemas
- Defensa de Prácticas
- Seguimiento Individual del Estudiante

8.2. Criterios de evaluación y calificación:

El alumno tendrá la posibilidad de aprobar la asignatura mediante una evaluación continua de la misma, sin necesidad, si no lo cree necesario, de realizar el examen final, o podrá en su caso optar por la evaluación no contínua. Modalidad 1. Evaluación continua.

A lo largo del curso se realizarán dos controles de conocimientos, el primero abarca el Bloque I (temas 1 al 6) y el segundo los Bloques II y III (temas 7 a 14). La evaluación de los controles de conocimiento sigue el siguiente criterio: en cada uno se podrá obtener 1 o 2 puntos: según se obtenga una nota de más de un 5 o más de un 6 (sobre 10) respectivamente. Además, durante el curso se pueden obtener dos puntos adicionales con la presentación de las actividades mencionadas a continuación:

- La asistencia a prácticas (obligatoria) y la entrega de un informe final en el formato establecido, supondrá la obtención de hasta 1 punto. La puntuación se dará en función de la destreza adquirida en las prácticas y la presentación del trabajo final.
- Las actividades en grupos reducidos de resolución de problemas, así como la asistencia y principalmente la participación en las sesiones de teoría, se evaluarán en función del trabajo personal y el desarrollado dentro del grupo al que se encuentre incorporado, y supondrá otro punto.

Esto permite obtener a lo largo del curso 6 puntos (y por tanto aprobar la asignatura).

- El examen final de la misma (no obligatorio si se han conseguido al menos 5 puntos) supondrá el resto de la nota de la asignatura. El examen estará constituido por una parte de teoría y otra de problemas, debiendo tener en cada parte al menos un 3.5 para realizar la media.
- La nota final de la asignatura se obtiene según: la nota del examen final (sobre 10) se multiplica por la fracción de puntos que no se hayan obtenido previamente con los parciales y actividades, y a eso se le suman los puntos obtenidos en parciales y actividades. Por ejemplo: si se saca un 3.5 en el primer parcial y un 7 en el segundo, y se obtienen los dos puntos por las actividades, se habrían obtenido durante el curso 4 puntos (0 del primer parcial, 2 del segundo y 2 de las actividades). En el examen final se saca un 2 (sobre 10), que multiplicado por 0.6 (los puntos no obtenidos durante el curso dividido entre 10) resulta un 1.2. Si a esto le sumamos los puntos obtenidos durante el curso, la nota final resulta un 5.2. Evidentemente, si se obtienen 5 puntos en el curso, y no se realiza el examen final, se tendría una nota final de 5.0 (5 puntos del curso + 0 * 0.5).

Modalidad 2. Examen final + actividades obligatorias.

- El examen estará constituido por una parte de teoría y otra de problemas, debiendo tener en cada parte al menos un 3.5 para realizar la media. Este exámen supondrá un mínimo del 80% de la asignatura.
- Las prácticas del laboratorio (obligatorias) supondrán, una vez uperado el examen final con al menos 4.0 puntos, hasta 1 punto (10%). La puntuación se dará en función de la destreza adquirida en las prácticas y la presentación del trabajo final. (Aquellos alumnos que no puedan asistir a las sesiones prácticas por motivos justificados, podrán superarlas mediante la realización de un examen de prácticas o un trabajo, a juicio del profesor en cada caso).
- Las actividades en grupos reducidos de resolución de problemas, se evaluarán en función del trabajo personal y el desarrollado dentro del grupo al que se encuentre incorporado. Supondrá el 10% de la nota final.

9. Orga	9. Organización docente semanal orientativa:						
		ande	e Nightor	ar midde	dica dos	Weight Carrier	
c of	Salas	be who	660 1000	5 go 1/1/02 5 go 1/1/02	Solvino Septim	Pruebas y/o	
2	G,	Or by	. Ch. Vill	. O. O	. O. 6	actividades eváluables	Contenido desarrollado
#1	2.75	0	0	0	0		
#2	2.75	0	0	0	0		
#3	2.75	0	0	0	0		
#4	2.75	1.5	0	0	0		
#5	2.75	0	2	0	0	Informe de prácticas	
#6	2.75	1.5	0	0	0		
#7	2.75	0	0	1.87	0	Informe de prácticas	
#8	2.75	1.5	0	0	0	Control de conocimientos	
#9	2.75	0	0	1.87	0	Informe de prácticas	
#10	2.75	1.5	0	0	0		
#11	2.75	0	2	0	0	Informe de prácticas	
#12	2.75	1.5	0	0	0		
#13	2.75	0	0	0	0		
#14	2.75	0	0	1.86	0	Informe de prácticas	
#15	2.9	1.5	0	0	0	Control de conocimientos	
	41.4	9	4	5.6	0		