CONSTANT OF MOTION IDENTIFYING ESQPTS

Armando Relaño¹ and Ángel L. Corps¹

¹Departament of Structure of the Matter, Thermal Physics and Electronics Complutense University of Madrid

April 23th, 2021

• Hamiltonian depending on an external parameter, $\mathcal{H}(\lambda)$.

DEFINITION OF ESQPT

An ESQPT is a non-analyticity of the level density and/or the level flow in the plane $E \times \lambda$.

• Generalization of QPT to excited states.

Typical features of QPT

- Non-analyticity at a critical value, λ_c .
- Two different phases separated by λ_c .

Example: Rabi/Dicke models

$$\mathcal{H} = \omega_o J_z + \omega a^{\dagger} a + \frac{2\lambda}{\sqrt{N}} J_x \left(a + a^{\dagger} \right), \ \lambda_c = \frac{\sqrt{\omega_o \omega}}{2}$$

$$\lambda < \lambda_c \quad \longrightarrow \quad \text{Normal phase} \longrightarrow \begin{cases} \langle a^{\dagger} a \rangle = 0 \\ \langle J_z \rangle = -N/2 \end{cases}$$
$$\lambda > \lambda_c \quad \longrightarrow \quad \text{Superradiant phase} \longrightarrow \begin{cases} \langle a^{\dagger} a \rangle > 0 \\ \langle J_z \rangle > -N/2 \end{cases}$$

No clear differences between $E < E_c$ and $E > E_c$

Armando Relaño (UCM)

P. Cejnar, P. Stránský, M. Macek, and M. Kloc, J. Phys. A 54, 133001 (2021)

R. Puebla and A. R., EPL 104, 50007 (2013)

P. Feldmann, C. Klempt, A. Smerzi, L. Santos, and M. Gessner, arXiv:2011.02823 (2020)

Armando Relaño (UCM)

Q. Wang and F. Perez-Bernal, arXiv:2011.11932 (2020)

LINK BETWEEN ESQPTS AND CLASSICAL MECHANICS

There is a fixed point of the classical Hamiltonian flow at the critical energy of an ESQPT:

$$\left.
abla \mathcal{H}\left(\mathbf{p},\mathbf{q}
ight)
ight|_{\left(\mathbf{p}_{c},\mathbf{q}_{c}
ight)}=0, \ \mathcal{H}(\mathbf{p}_{c},\mathbf{q}_{c})=\mathcal{E}_{c}.$$

- The classical Hamiltonian is reached in a certain limit:
 - Dicke model, $N \to \infty$.

• Rabi model,
$$\frac{\omega_o}{\omega} \to \infty$$
.

$$2E/\omega_0 = -4$$

$$2E/\omega_0 = -3$$

$$2E/\omega_0 = -2$$

$$2E/\omega_0 = -1$$

$$2E/\omega_0 = 0$$

SUMMARY OF CLASSICAL RESULTS

- If $E < E_c$, trajectories are trapped either q(t) < 0 or q(t) > 0, $\forall t$.
- If $E > E_c$, trajectories pass through q < 0 and q > 0.

Armando Relaño (UCM)

WHAT HAPPENS IN QUANTUM MECHANICS?

- Quantum and classical evolutions are different.
- We can find superpositions of both parts of the phase space.

Our objective Translate this features of classical dynamics into quantum thermodynamics.

Armando Relaño (UCM)

From classical dynamics to quantum thermodynamics

Quantum system, \mathcal{H} , with a classical analogue, $\mathcal{H}(\mathbf{q}, \mathbf{p})$, and a dynamical function, $f(\mathbf{q}, \mathbf{p})$, so that

- If $E < E_c$, $f(t) \equiv f(\mathbf{q}[t], \mathbf{p}[t])$ is either f(t) < 0 or f(t) > 0, $\forall t$.
- If $E > E_c$, any trajectory passes through f > 0 and f < 0.

From classical dynamics to quantum thermodynamics

Quantum system, \mathcal{H} , with a classical analogue, $\mathcal{H}(\mathbf{q}, \mathbf{p})$, and a dynamical function, $f(\mathbf{q}, \mathbf{p})$, so that

- If $E < E_c$, $f(t) \equiv f(\mathbf{q}[t], \mathbf{p}[t])$ is either f(t) < 0 or f(t) > 0, $\forall t$.
- If $E > E_c$, any trajectory passes through f > 0 and f < 0.

ROUTE TO QUANTUM THERMODYNAMICS

• Quantum operator for f, $\hat{f} = \hat{f}(\hat{\mathbf{q}}, \hat{\mathbf{p}})$.

Output Definition:
$$C = \operatorname{sign}(\hat{f})$$
.

* $C = M^{-1} \operatorname{sign}(\Lambda) M$, Λ diagonal matrix with eigenvalues of \hat{f} , and M matrix whose columns are the eigenvectors of \hat{f} .

*
$$\mathcal{C} = \frac{2}{\pi} \int_0^\infty dx \, \hat{f} \left(x^2 \mathbb{I} + \hat{f}^2 \right)^{-1}$$

* Spec(C) = ± 1 .

From classical dynamics to quantum thermodynamics

Let us write the Hamiltonian in terms of the prjectors onto the eigenstates, $\mathcal{H} = \sum_{n} E_{n} \hat{P}_{n}$.

CONJECTURE

•
$$[\mathcal{C}, \hat{P}_n] = 0, \forall E_n < E_c.$$

•
$$[\mathcal{C}, \hat{P}_n] \neq 0, \forall E_n > E_c.$$

COROLLARY

Let us consider an initial condition, $|\psi(0)\rangle$. *C* is a constant of motion for the corresponding time evolution, $|\psi(t)\rangle$, iff $\langle \psi(0)| \mathcal{H} |\psi(0)\rangle < E_c$.

C acts like a discrete \mathbb{Z}_2 symmetry if $E < E_c$.

Thermodynamics consequences of the new constant of motion

nature	
ARTICLE Received 22 Dec 2015 Accepted 23 May 2016 Published 7 Jul 2016 DOI: 10.1038/Heamer21012 Thermodynamics of quantum systems with multiple conserved quantities Yelena Guryanova ¹ , Sandu Popescu ¹ , Anthony J. Short ¹ , Ralph Silva ¹² & Paul Sirzypczyk ¹	OPEN

Thermodynamics consequences of the new constant of motion

nature	
ARTICLE Received 22 Dae 2016 Accepted 23 May 2016 Published 7 Jd 2016 DOLE RADOLF/Received 2006 OPEN Thermodynamics of quantum systems with multiple conserved quantities	
Yelena Gr nature communications	
ARTICLE DOI: 10.001/www.source.edu Revealing missing charges with generalised quantum fluctuation relations J. Mur-Petit ^{® 1} , A. Relatio ² , R.A. Molina ³ & D. Jaksch ^{® 14}	

Rabi and Dicke models

CONSTANT OF MOTION FOR THE RABI AND DICKE MODELS

- If $E < E_c$, classical trajectories have either q > 0 or q < 0.
- If $E > E_c$, classical trajectories pass through q > 0 and q < 0.

We propose that $\mathcal{C} = \operatorname{sign} \left(\hat{a}^{\dagger} + \hat{a} \right)$ is a constant of motion if $E < E_c$

Numerical experiment I

• Initial condition,
$$|\psi(0)\rangle = \frac{1}{\sqrt{10}} \sum_{i=M}^{M+9} |E_i\rangle$$
, different values for M
• Time evolution, $C(t) = \langle \psi(t) | C | \psi(t) \rangle$.
• Dispersion, $\sigma_C^2 = \frac{1}{N} \sum_{i=1}^N (C(t_i) - \overline{C})^2$.

Numerical experiment I

Rabi model, $\lambda = 3\lambda_c, \, \omega_o/\omega = 300$

Numerical experiment I

Dicke model, $\lambda = 3\lambda_c$, N = 40

Numerical experiment I

Rabi model, $\lambda = 3\lambda_c, \, \omega_o/\omega = 300$

Calculations done in quadruple precision!

Armando Relaño (UCM)

Numerical experiment I

Dicke model, $\lambda = 3\lambda_c$, N = 40

Calculations done in quadruple precision!

Armando Relaño (UCM)

Thermodynamics of the Rabi and Dicke models

• Both the Rabi and Dicke models have a \mathbb{Z}_2 symmetry, $[\mathcal{H}, \hat{\Pi}] = 0$,

$$\hat{\Pi} = \exp\left(i\pi\left[j+\hat{J}_{z}+\hat{a}^{\dagger}\hat{a}
ight]
ight).$$

In both cases,

$$\begin{array}{ll} \mathcal{H} \left| \boldsymbol{E}_{\boldsymbol{n},\pm} \right\rangle &=& \boldsymbol{E}_{\boldsymbol{n},\pm} \left| \boldsymbol{E}_{\boldsymbol{n}},\pm \right\rangle, \\ \hat{\Pi} \left| \boldsymbol{E}_{\boldsymbol{n},\pm} \right\rangle &=& \pm \left| \boldsymbol{E}_{\boldsymbol{n}},\pm \right\rangle. \end{array}$$

THERMODYNAMICS OF THE RABI AND DICKE MODELS
If *E* < *E_c*, any statistical ensemble must depend on *H*, Π̂, and *C*.
If *E* > *E_c*, any statistical ensemble must depend on *H* and Π̂.

Mathematical properties of C

Let us consider the definition of C:

$$\mathcal{C} = \frac{2}{\pi} \int_0^\infty dx \, \hat{f} \left(x^2 \mathbb{I} + \hat{f}^2 \right)^{-1}, \quad \hat{f} = \hat{a}^{\dagger} + \hat{a}.$$

- \hat{f} changes the parity of any state.
- \hat{f}^2 commutes with parity.
- $x^2 \mathbb{I} + \hat{f}^2$ commutes with parity $\forall x$.
- $(x^2\mathbb{I} + \hat{t}^2)^{-1}$ commutes with parity $\forall x$.
- $\hat{f}\left(x^{2}\mathbb{I}+\hat{f}^{2}\right)^{-1}$ changes the parity $\forall x$.

Therefore, $\ensuremath{\mathcal{C}}$ changes the parity of any state.

Main consequence

From previous results we know:

- $\hat{\Pi}$: $\mathcal{E}_n \to \mathcal{E}_n$, where the \mathcal{E}_n is the subspace with energy E_n , $\forall \mathcal{E}_n$.
- $\mathcal{C}: \mathcal{E}_n \to \mathcal{E}_n$, if $E_n < E_c$.
- But C changes parity: $C : \pm \rightarrow \mp$.

Main consequence

From previous results we know:

- $\hat{\Pi}$: $\mathcal{E}_n \to \mathcal{E}_n$, where the \mathcal{E}_n is the subspace with energy E_n , $\forall \mathcal{E}_n$.
- $\mathcal{C}: \mathcal{E}_n \to \mathcal{E}_n$, if $E_n < E_c$.
- But C changes parity: $C : \pm \rightarrow \mp$.

DEGENERACIES IF $E < E_c$

The spectrum must be pairwise degenerate if $E < E_c$. We have two different eigenbasis:

$$\begin{array}{l} \mathcal{H} \left| E_{n,\pm} \right\rangle = E_n \left| E_{n,\pm} \right\rangle & \mathcal{H} \left| \varepsilon_{n,\pm} \right\rangle = E_n \left| \varepsilon_{n,\pm} \right\rangle \\ \hat{\Pi} \left| E_{n,\pm} \right\rangle = \pm \left| E_{n,\pm} \right\rangle & \mathcal{C} \left| \varepsilon_{n,\pm} \right\rangle = \pm \left| \varepsilon_{n,\pm} \right\rangle \end{array}$$

• Property I:

$$\begin{array}{lll} \mathcal{C} \left| \mathcal{E}_{n}, + \right\rangle & = & \alpha \left| \mathcal{E}_{n}, - \right\rangle, \text{ if } \mathcal{E}_{n} < \mathcal{E}_{c}, \\ \mathcal{C} \left| \mathcal{E}_{n}, - \right\rangle & = & \beta \left| \mathcal{E}_{n}, + \right\rangle, \text{ if } \mathcal{E}_{n} < \mathcal{E}_{c}. \end{array}$$

• Property II:

$$\begin{aligned} \mathcal{C}\left(\gamma \left| E_{n},+\right\rangle +\delta \left| E_{n},-\right\rangle \right) &= \left(\gamma \left| E_{n},+\right\rangle +\delta \left| E_{n},-\right\rangle \right), \text{ if } E_{n} < E_{c} \\ \mathcal{C}\left(\delta \left| E_{n},+\right\rangle -\gamma \left| E_{n},-\right\rangle \right) &= -\left(\delta \left| E_{n},+\right\rangle -\gamma \left| E_{n},-\right\rangle \right), \text{ if } E_{n} < E_{c}. \end{aligned} \\ \text{With } |\gamma|^{2} + |\delta|^{2} = 1. \end{aligned}$$

There are just two solutions for these equations:

Solution I:
$$\alpha = \beta = 1, \ \gamma = \delta = \frac{1}{\sqrt{2}},$$

Solution II: $\alpha = \beta = -1, \ \gamma = -\frac{1}{\sqrt{2}}, \ \delta = \frac{1}{\sqrt{2}}.$

Armando Relaño (UCM)

Numerical experiment II

- Given a certain eigenstate with positive parity, $|E_{n,+}\rangle$, and energy $E_{n,+}$, we seek the eigenstate with negative parity, $|E_{n,-}\rangle$, and the closest energy, $E_{n,-}$.
- We study the evolution of the gap, $d = |E_{n,+} E_{n,-}|$ as a function of the energy.
- We study the evolution of $D = 1 |\langle E_{n,+} | C | E_{n,-} \rangle|$ as a function of the energy.

Calculations in quadruple precision!

Armando Relaño (UCM)

Armando Relaño (UCM)

Armando Relaño (UCM)

Armando Relaño (UCM)

Expected values in equilibrium and C

Let us consider a closed system following an unitary evolution. Does it reach an equilibrium state? Not rigurously... but we can define an effective equilibrium state, near which the time-evolved wavefunction stays mostly of the time.

$$\begin{split} |\psi(\mathbf{0})\rangle &= \sum_{n} \left[C_{n,+} \left| E_{n,+} \right\rangle + C_{n,-} \left| E_{n,-} \right\rangle \right] \longrightarrow \\ &\longrightarrow \left| \psi(t) \right\rangle \left\langle \psi(t) \right| = \sum_{n,m} \sum_{i,j} C_{n,i}^* C_{m,j} \mathbf{e}^{-i\left(E_{n,i} - E_{m,j} \right) t/\hbar} \left| E_{n,i} \right\rangle \left\langle E_{m,j} \right| \end{split}$$

If
$$E < E_c$$
, $\rho_{eq} = \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} dt |\psi(t)\rangle \langle \psi(t)| =$

$$= \sum_n \left\{ |C_{n,+}|^2 |E_{n,+}\rangle \langle E_{n,+}| + |C_{n,-}|^2 |E_{n,-}\rangle \langle E_{n,-}| + C_{n,-}^* C_{n,+} |E_{n,+}\rangle \langle E_{n,-}| + C_{n,+}^* C_{n,-} |E_{n,-}\rangle \langle E_{n,+}| \right\}$$
P. Beimann Phys. Bev. Lett. **101**. 190403 (2008)

Armando Relaño (UCM)

Numerical experiment III

Analysis of equilibrium expected values of physical observables:

$$\left\langle \mathcal{O} \right\rangle_{\rm eq} = {\rm Tr} \left[\rho_{\rm eq} \mathcal{O} \right]$$

• Initial state: ground state of the Dicke model with $\lambda = 1.5\lambda_c$.

$$\left|\psi(\mathbf{0})
ight
angle = \sqrt{\rho}\left|E_{\mathbf{0},+}
ight
angle + \mathrm{e}^{i\phi}\sqrt{1-
ho}\left|E_{\mathbf{0},-}
ight
angle.$$

- Quench the system up to $\lambda = 3\lambda_c$.
- Calculate long-time averages of physical observables.
- Relevant initial values:

$$\begin{array}{lll} \left\langle \psi(\mathbf{0}) \right| \hat{\Pi} \left| \psi(\mathbf{0}) \right\rangle &=& 2p-1, \\ \left\langle \psi(\mathbf{0}) \right| \mathcal{C} \left| \psi(\mathbf{0}) \right\rangle &=& -2\sqrt{p(1-p)} \cos \phi. \end{array}$$

C is conserved, as expected.

Armando Relaño (UCM)

Same results $\forall p \& \phi$. Equilibrium only depending on $E \dots$ boring!

Armando Relaño (UCM)

Armando Relaño (UCM)

Numerical experiment III

Equilibrium values also depend on C!

Armando Relaño (UCM)

Excited-state phase diagram

Normal phase $-\rho_{eq}$, mixture of states with well-defined $\hat{\Pi}$. Symmetry-broken phase $-\rho_{eq}$, mixture of states with not well-defined $\hat{\Pi}$, C or both.

Main result

- We find two phases separated by the critical energy of an ESQPT, with different thermodynamics.
 - ► In the normal phase, equilibrium values depend on *E* maybe other global conserved charges.
 - ► In the symmetry-broken phase, equilibrium values depend also on *C*.

A. L. Corps and A. R., arXiv:2103.10762 (2021)

Future work

- Statistical ensembles to account for the role played by C.
- Consequences of the existence of two non-commuting Z₂ symmetries in non-equilibrium processes.