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» They fully account for Hilbert-space kinematics, and
they remain valid beyond the breaking time

» They provide a precise way to relate quantum mechanical
phenomena with classical (Mean Field) integrability/chaos

» They are applicable within a regime, the semiclassical regime,
where typical actions are larger compared with 7, but

» semiclassical methods are asymptotic and therefore
non-perturbative in A
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Life at the border... can be quite singular!
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Interference is missing

eiS/h iNR

Non-perturbativel Example: discreteness!!!
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The transition probability

Feynman path integral

q
fin.

inl— — t

Everything starts with .
the action R[q(t)] K(fin. ; in.) = [ D[q(t)]er"la(*)]

P(q\D, tr: g, ;) = |K(q"), tr; g, 1) 2
Where are the classical paths?, can we use them?
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J Dla(0]er RO =~ 55\ /W ed o5

> 1930's
» Starts from WKB
» Only short times

John H. van Vleck

> 1970's

» Starts from Feynman

» Short and large times p

Martin GutZW|||er
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iii) Several solutions qﬁl(t) = qﬁl(t; gD, gt t).
iv) Expand in z,(t) = q(t) — qul(t) up to second order.
)

v) Integrate the quantum fluctuations z,(t).
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C(t < tg) ~ e*t: quasiclassical ~ Saturation: semiclassical!

12 /48



Want to study the interplay between criticallity and
scrambling?

13/48



Want to study the interplay between criticallity and
scrambling?

We need semiclassical methods in Many-Body Hilbert
(Fock) space!!

13/48



Want to study the interplay between criticallity and
scrambling?

We need semiclassical methods in Many-Body Hilbert
(Fock) space!!

... but let us take it easy....
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The Bose-Hubbard model

States
oo/ 8909 oo/ 00/ |n) =2,4,3,2,3)

Dynamics

’ af af At 4 stats
H= Z [Eja}raj ) (a}raHl + a}rﬂaj) + Ua;a;3j4;
Jj
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» Transition amplitude K (fin. ; in.) = (n(f) \U(tf, t;)|n()
» Transition probability P(fin. ; in.) = |K(fin. ; in.)|?

K(fin. ; in.) for Fock states?, van Vleck-Gutzwiller for fields?
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van Vleck-Gutzwiller propagator for discrete quantum fields

[ |= I I Wave equation for particles and i — 0

use classical trajectories

Quantum dynamics of fields and N — oo
use solutions of classical field equation

Start with a path integral and...
Do as Gutzwiller!
(easier to say than to do)

Tom
Engl et al PRL (2014), Phil. Trans. Roy. Soc. (2016), PRE (2015), PRA (2018) (Fermions!!)
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Semiclassical propagator for (Bose-) Hubbard models

K (n(f),n("), t) _ <n(f) ‘ o LA

n(")>z Z .Aeh - (n),n(),£)
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Classical trajectory 7 : ¢;(s) = 1/nj(s)e/(®)

nonlinear mean-field equation (i.e GP)
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Semiclassical propagator for (Bose-) Hubbard models

path integral, N — oo, stationary phase approximation

K (0,00, £) = (0|} nu>>; Z A kR (00,0
i

() —n(f)

Classical trajectory 7 : ¢;(s) = 1/nj(s)e/(®)

_]O'

hdqﬁ OH.
o¢*
nonlinear mean- fleld equation (i.e GP)

R, (n(’()7 n(7), t) = géds [160.(s) - ny(s) — Hal (ci)i’;(s), ¢.(s))]
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Many-Body interference at work: coherent backscattering

We know how to proceed...
P(n(f), tr; n(i), t,') = Z \/ W71 W,Yze%(R71_R“/z)""‘%(ﬂﬁ_ﬂvz)
1,72

and look for constructive interference!l

w72 =Tm

P(fin. # in.) = Pc(fin.; in.)
P(fin. = in.) = 2Pc¢(fin. = in.)
For classical (GP) invariant under ¢(s) — ¢*(t — s) and chaotic

we predict a
coherent enhancement of the quantum probability of return!
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Checking against numerics
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And the scrambling....?

log (C(t))

A ' Saturation

Rammensee, JDU, Richter PRL (2018)
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» The late saturation of the OTOCs is an interference effect

Both can be lifted into the realm of
many-body systems, where

> fast scrambling appears due to instability of mean-field
solutions, and

» saturation due to interference from different mean-field
solutions

And this is what we all know and love...

» In systems with a mean field limit.... ESQPTs are typical of
(quasi) integrable regimes

so...do we have scrambling around ESQPTs?777
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The model: atractive Lieb-Liniger

Hamiltonian in second quantization:

(0)0%0(0) = 551 0)51 (0)5(0)i )]

E NI E NP
a g — — 5k+lm+ﬂaka/am3n
k

khnn

» describes one-dimensional bosonic gas ,J/“\

with J-like short-range interactions

(only s-wave scattering) N

> <-

» model is integrable for periodic boundary conditions
— infinite number of conservation laws (including number +
momentum conservation)
— look for reduced system by truncating k-summation
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Effect of truncation

T T T — T
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S S S S S S Phys. Rev. A76,063620
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aN

» Number and momentum conservation is not destroyed by
truncation

» System is again integrable for kpax = 1 (commonly used)

» Low-energy spectrum is quite similar, i.e. interesting properties
are preserved
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Effect of truncation

! \>4
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» Number and momentum conservation is not destroyed by
truncation

» System is again integrable for kpax = 1 (commonly used)

> Low-energy spectrum is quite similar, i.e. interesting properties
are preserved
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Scheme of SC treatment of Fj

» find classical Hamiltonian by symmetrizing operators and
replacing

Sk — ok =—=(qi + ipx) = /nrel

N

~ . —i0
B = O =5 (@~ ipk) = Ve ™™
» eliminate n_; and ny in favor of the COM
N:n_1+no+n1, [:nl—n_l
» quantize resulting Hamiltonian using torus quantization
‘- A=S(E,N,L)=2rh(n+v/4)
v: Maslov index
A7 p2on,
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(Re-)Quantization of Hj

» Main difficulty: identification of the pri-

mitive orbits on the 3-Torus

» Correct quantization rules for N and [:

N:N+i

N=01,...
2 077 Y

» For the rest of the talk: L =0
> Rescaled energy:

~ 1 _ 2
w(z,go):(l—z)—% ( 22) +4z(1 — z) cos?
~ E ~
z:n—No, a = Na, w=—=+c(N,a)
N N
» Rescaled Poisson bracket: {z, ¢} = % = et
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Phase space structure

Q —z)?
w(z,p)=(1-2)— 1 %4—42(1—2)&52@

[SEE]

s
2

N =
[N

O
Il

©
—

(=] =l = = = o
26 /48



Phase space structure
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Phase space structure

af(l-2)

2
w(z,p)=(1-2)— 2 5 +4z(1—z)cos® p

[SEE]

i
0 2

N =

O
Il
=

(e)

———
—

[SEE

D¢

26 /48



Phase space structure

Q —z)?
w(z,p)=(1-2)— 1 %4—42(1—2)&52@

[SEE]

i
0 2

N =
[N

O
Il
=

—

—
————

[SEE

D¢

26 /48



Phase space structure
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Phase space structure
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Phase space structure
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Energy quantization
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Energy quantization

1 . k+ 3% 1
— — - 2 _ k=
o (1= 2w ) = 2 = h(k+ 3)
1.0~
0.9}
2 08 a=13
w = —0.01
0.7}
0.6

27/48



Energy quantization
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Comparison with exact diagonalization

Excitation spectrum (numerical ground state)

Dots: exact
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Comparison with exact diagonalization

Excitation spectrum (numerical ground state)
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Excited state quantum phase transition

A QPT of k" order is related to a discontinuity in the k"
derivative of the energy E,

— k=0 —k=2 —k=4 —k=6

02F 3
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o N e N =20
Py 06 09 10 11 12 13 14 15
N
o N s i
}ZQLZ 8% 100 106 110 115
= ozp ' L~ N\ §

-02 -~ i

-06 i N =10000

0% 100 101 102 103

alN

20 /48



Excited state quantum phase transition

Interpretation of discontinuity:

dEk

<¢k|7|¢k>
:_/“de (kBT ()P (B)D(O)D(0)]ehv)

=— ﬁ <wkw (0)7(0)¢h(0)(0) 1))

gQ(k): normalized local two-point correlation of k" state

= sudden increase of pair correlation at & = a((;f) >1

= bunching of particles/bound state formation
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Excited state quantum phase transition
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Mesoscopic (large-N) aspects of first excitation

» Minimum involves a vibration (ground state) and the libration
closest to the separatrix

» For N > 1 this situation occurs for & = 1, i.e. separatrix
enters allowed phase space only for ¢ < 1

> Action integrals can be approximated for small angles
» Equation for the gap minimum has universal scaling:

2

- 21w \3 .~
Omin =1 + <32q ) -N
o0

217
3290

wIN

5 4
~ 3 ~ 1
AEnin(N) :? < ) Apoo - N73,

with universal constants gso = 0.525..., Aus = 0.953...
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Energy spacing near transitions

Fix & > 1 and calculate energies near the separatrix.

» Classical orbits close to a separatrix bypass hyperbolic fixed
points

» Traversal time of an orbit on the separatrix diverges
logarithmically

» Largest contribution to action comes from neighborhood of
the fixed points — quadratic expansion needed

\

Libration

Vibration
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Energy spacing near transitions
Generic hamiltonian after canonical transformation:

1
Hpp = 5(()\ -p)? —¢%), A: stability exponent

ASIE] = |S[E] - S[0]] . /
S YN CEr

1
= JIEllog|E| + O(E)

Inverting AS[E] = 27h(k + 1) involves Lambert-W function. But
for very small E it yields

AE — 2mwh\ 3site 2V — 1
—log(h) N log N
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The log time scale

this we know...
50

N =200

a=2

0.0 02 04 06 08 1.0 1.2 14
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Ha e
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The log time scale

Large-N energy scaling at the separatrix suggests time scale

2rhe log(N)
x —

AE A

» Resembles Ehrenfest time —% log & in chaotic systems, where
A is the Lyapunov exponent

» Link between chaos and instabilities in integrable systems:
SCRAMBLING!!!

» Calculate scrambling time as an indicator for breakdown of
classical description Geiger, JDU, Richter PRL (2021)
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Log time as scrambling time: numerical check

Scheme for numerical calculation:

» Calculate one-body density matrix

i = (D133 1())
for the time evolved condensate
(1)) = e |N)
» Calculate von Neumann-entropy
Si(t) = — Trplogp

» Define scrambling time t; as the time needed to reach a
certain threshold value

» Do this for different particle numbers
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Scrambling time (numerical results)

T T T T T
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Scrambling time (numerical results)

143 T T —
1.2 -\\ ]
1.0 g
> log(N
Joat R =
o0
S o) ]
0.4 B
e o o Numerics for N = 10000
0.2} B
e Jog(ts.) = 1.07 — 0.521 log(& — 1)
0.0L L I L L k|
-0.5 0.0 0.5 1.0
log(a — 1)
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In real time...
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In real time...

N =10

N =102
— N=10°
— N=10*
— N=10°
— N =10

Wiait a second... what are these revivals doing there?
These are NOT related with the (astronomical) recurrence times...
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What about the OTOCs?7?

(a) (j(t)
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Coexistence of fast initial scrambling and long-time revivals
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What about the OTOCs?7?

(a) (j(t)
10—4.
1077
N
101 10 — 10*
102 — 10° i
— 10% — 10° 2Xt/ log(N)
1Y A TSR S TS R RS S RS |
0 1 2 3 4 5
t/T

Coexistence of fast initial scrambling and long-time revivals
long-time not that long at all! (only logarithmic with )
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The log time scale reconsidered

this we know...
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The log time scale reconsidered
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The log time scale

50

-50

- 100

this we know...

reconsidered

surprise!!

00 02 04 06 08 1.0 12 14

-'1-_-"_--—-___;';\: ;__‘_-_...—-]\-;2:':1‘(;_9"_
S~ N =10'
___________________ N = 1023
___________________ N =102 ]
1 0 1 2
k/log N

Despite the divergence, the spectrum is (locally) asymptotically

homogeneous

— perfect coherent revivals at the log (not recurrence) time scale!!
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Robust?

Go from 3-site to 5-site (non integrable)
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Robust?

Go from 3-site to 5-site (non integrable)
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Robust?

Go from 3-site to 5-site (non integrable)

(a)
107
107 H log[C(t)/Co]
log(N)
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— 10° 0 T
— 10* — 10° 22t/ log(N)
0 1 2 3 4 5
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Robust?
Go from 3-site to 5-site (non integrable)

(b)
1x10°8 'C(t)/Co

5x 1072

2x107° F
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5x 10710F

0.0
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Summary |: about semiclassics

» (Truly) semiclassical methods a la Gutzwiller account for
interference phenomena
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Summary |: about semiclassics

» (Truly) semiclassical methods a la Gutzwiller account for
interference phenomena

» Please remember that! (semiclassics is NOT classics)
» Such ideas can be lifted to Fock space

» They account for fast scrambling and saturation of OTOCs in
the chaotic case

46 /48
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Summaryll: about this talk

Our dear ESQPTs require (quasi) integrability, so we have:

v

Found an ESQPT for a truncated Lieb-Liniger model

Extended the (integrable) torus quantization into Fock space

vy

Studied the discrete spectrum near separatrices

and found

» Fast initial scrambling due to local instability

v

Late time revivals due to asymptotically homogeneous but
discrete spectrum, and...

A unique SHORT time scale ~ log N ruling the initial scrambling,
the breaking of quantum-classical correspondence and coherent
revivals signaling re-entrant information
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H. Hummel, B. Geiger, JDU, and K. Richter "Reversible quantum information spreading in

many-body systems near criticallity"PRL 123, 160401 (2019)
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