A semiclassical approach to scrambling and revival times around criticallity The Huelva sessions on ESQPTs

Benjamin Geiger, Quirin Hummel, Juan-Diego Urbina, and Klaus Richter
(Regenbsurg, Liege)

April the 30th, 2021

First disclaimer:

- This talk is about semiclassics like Gutzwiller's!!

Martin Gutzwiller, "Chaos in Classical and Quantum Physics", Springer

First disclaimer:

- This talk is about semiclassics like Gutzwiller's!!
- Semiclassical methods use the properties of the classical solutions to approximate quantum mechanical amplitudes

Martin Gutzwiller, "Chaos in Classical and Quantum Physics", Springer

First disclaimer:

- This talk is about semiclassics like Gutzwiller's!!
- Semiclassical methods use the properties of the classical solutions to approximate quantum mechanical amplitudes
- They fully account for Hilbert-space kinematics, and

Martin Gutzwiller, "Chaos in Classical and Quantum Physics", Springer

First disclaimer:

- This talk is about semiclassics like Gutzwiller's!!
- Semiclassical methods use the properties of the classical solutions to approximate quantum mechanical amplitudes
- They fully account for Hilbert-space kinematics, and they remain valid beyond the breaking time

Martin Gutzwiller, "Chaos in Classical and Quantum Physics", Springer

First disclaimer:

- This talk is about semiclassics like Gutzwiller's!!
- Semiclassical methods use the properties of the classical solutions to approximate quantum mechanical amplitudes
- They fully account for Hilbert-space kinematics, and they remain valid beyond the breaking time
- They provide a precise way to relate quantum mechanical phenomena with classical (Mean Field) integrability/chaos

Martin Gutzwiller, "Chaos in Classical and Quantum Physics", Springer

First disclaimer:

- This talk is about semiclassics like Gutzwiller's!!
- Semiclassical methods use the properties of the classical solutions to approximate quantum mechanical amplitudes
- They fully account for Hilbert-space kinematics, and they remain valid beyond the breaking time
- They provide a precise way to relate quantum mechanical phenomena with classical (Mean Field) integrability/chaos
- They are applicable within a regime, the semiclassical regime, where typical actions are larger compared with \hbar, but

Martin Gutzwiller, "Chaos in Classical and Quantum Physics", Springer

First disclaimer:

- This talk is about semiclassics like Gutzwiller's!!
- Semiclassical methods use the properties of the classical solutions to approximate quantum mechanical amplitudes
- They fully account for Hilbert-space kinematics, and they remain valid beyond the breaking time
- They provide a precise way to relate quantum mechanical phenomena with classical (Mean Field) integrability/chaos
- They are applicable within a regime, the semiclassical regime, where typical actions are larger compared with \hbar, but
- semiclassical methods are asymptotic and therefore non-perturbative in \hbar

Martin Gutzwiller, "Chaos in Classical and Quantum Physics", Springer

Life at the border...

Life at the border...

$N=1, \hbar \rightarrow 0$ and decoherence $\rightarrow 0$: Classical Particle

Life at the border...

Life at the border...

Finite $N, \hbar \rightarrow 0$ and decoherence $\rightarrow 0$: Classical Particles

Life at the border...

thermodynamic limit: (nonlinear) waves

Life at the border...

thermodynamic limit: (nonlinear) waves

$N \rightarrow \infty$ and decoherence $\rightarrow 0$: Classical Fields

Life at the border... can be quite singular!

Life at the border... can be quite singular!

quantum(S)

Life at the border... can be quite singular!

quantum(S)
 \neq

Life at the border... can be quite singular!

quantum(S)
\neq
classical $(S)+$ corrections (\hbar / S)

Life at the border... can be quite singular!

quantum(S)
\neq
classical $(S)+$ corrections (\hbar / S)

quantum (N)
\neq
$\operatorname{classical}(N)+$ corrections $(1 / N)$

Life at the border... can be quite singular!

quantum (S)
\neq
$\operatorname{classical}(S)+\operatorname{corrections}(\hbar / S)$
quantum(N)
\neq
classical(N)+corrections $(1 / N)$

Interference is missing

$$
\mathrm{e}^{i S / \hbar}, \mathrm{e}^{i N R}
$$

Non-perturbative! Example: discreteness!!!

The transition probability

The transition probability

Everything starts with the action $R[q(t)]$

The transition probability

Everything starts with the action $R[q(t)]$

$K($ fin. ; in. $)=\int \mathcal{D}[q(t)] \mathrm{e}^{\frac{i}{\hbar} R[q(t)]}$

The transition probability
Feynman path integral

Everything starts with the action $R[q(t)]$

$K($ fin. ; in. $)=\int \mathcal{D}[q(t)] \mathrm{e}^{\frac{i}{\hbar} R[q(t)]}$

The transition probability
Feynman path integral

Everything starts with the action $R[q(t)]$

$K($ fin. ; in. $)=\int \mathcal{D}[q(t)] \mathrm{e}^{\frac{i}{\hbar} R[q(t)]}$

$$
P\left(q^{(f)}, t_{f} ; q^{(i)}, t_{i}\right)=\left|K\left(q^{(f)}, t_{f} ; q^{(i)}, t_{i}\right)\right|^{2}
$$

The transition probability
Feynman path integral

Everything starts with the action $R[q(t)]$

$K($ fin. ; in. $)=\int \mathcal{D}[q(t)] \mathrm{e}^{\frac{i}{\hbar} R[q(t)]}$

$$
P\left(q^{(f)}, t_{f} ; q^{(i)}, t_{i}\right)=\left|K\left(q^{(f)}, t_{f} ; q^{(i)}, t_{i}\right)\right|^{2}
$$

Where are the classical paths?, can we use them?

The semiclassical approximation $(R[q(t)] \gg \hbar)$

The semiclassical approximation $(R[q(t)] \gg \hbar)$

- 1930's
- Starts from WKB
- Only short times

John H. van Vleck

The semiclassical approximation $(R[q(t)] \gg \hbar)$

$$
\int \mathcal{D}[q(t)] \mathrm{e}^{\frac{i}{2} R[q(t)]} \simeq \sum_{\gamma}{\sqrt{W_{\gamma}} \mathrm{e}^{\frac{i}{\hbar} R_{\gamma}+i \frac{\pi}{4} \mu_{\gamma}}}^{\text {ren }}
$$

- 1930's
- Starts from WKB
- Only short times

John H. van Vleck

- 1970's
- Starts from Feynman
- Short and large times μ

Crash course on semiclassics (a bit technical)

Start with an action $R[q(t)]$ and the exact path integral

$$
\int \mathcal{D}[q(t)] \mathrm{e}^{\frac{i}{\hbar} R[q(t)]}
$$

Crash course on semiclassics (a bit technical)

Start with an action $R[q(t)]$ and the exact path integral

$$
\int \mathcal{D}[q(t)] \mathrm{e}^{\frac{i}{\hbar} R[q(t)]}
$$

i) Classical limit is defined by

$$
\delta_{q} R[q(t)]=0 \quad \text { (Hamilton principle!) }
$$

Crash course on semiclassics (a bit technical)

Start with an action $R[q(t)]$ and the exact path integral

$$
\int \mathcal{D}[q(t)] \mathrm{e}^{\frac{i}{\hbar} R[q(t)]}
$$

i) Classical limit is defined by

$$
\delta_{q} R[q(t)]=0 \quad \text { (Hamilton principle!) }
$$

ii) Remember the boundary conditions $q\left(t_{i}\right)=q^{(i)}, q\left(t_{f}\right)=q^{(f)}$

Crash course on semiclassics (a bit technical)

Start with an action $R[q(t)]$ and the exact path integral

$$
\int \mathcal{D}[q(t)] \mathrm{e}^{\frac{i}{\hbar} R[q(t)]}
$$

i) Classical limit is defined by

$$
\delta_{q} R[q(t)]=0 \quad \text { (Hamilton principle!) }
$$

ii) Remember the boundary conditions $q\left(t_{i}\right)=q^{(i)}, q\left(t_{f}\right)=q^{(f)}$
iii) Several solutions $q_{\gamma}^{\mathrm{cl}}(t):=q_{\gamma}^{\mathrm{cl}}\left(t ; q^{(i)}, q^{(f)}, t_{f}, t_{i}\right)$.

Crash course on semiclassics (a bit technical)

Start with an action $R[q(t)]$ and the exact path integral

$$
\int \mathcal{D}[q(t)] \mathrm{e}^{\frac{i}{\hbar} R[q(t)]}
$$

i) Classical limit is defined by

$$
\delta_{q} R[q(t)]=0 \quad \text { (Hamilton principle!) }
$$

ii) Remember the boundary conditions $q\left(t_{i}\right)=q^{(i)}, q\left(t_{f}\right)=q^{(f)}$
iii) Several solutions $q_{\gamma}^{\mathrm{cl}}(t):=q_{\gamma}^{\mathrm{cl}}\left(t ; q^{(i)}, q^{(f)}, t_{f}, t_{i}\right)$.
iv) Expand in $z_{\gamma}(t)=q(t)-q_{\gamma}^{\mathrm{cl}}(t)$ up to second order.

Crash course on semiclassics (a bit technical)

Start with an action $R[q(t)]$ and the exact path integral

$$
\int \mathcal{D}[q(t)] \mathrm{e}^{\frac{i}{\hbar} R[q(t)]}
$$

i) Classical limit is defined by

$$
\delta_{q} R[q(t)]=0 \quad \text { (Hamilton principle!) }
$$

ii) Remember the boundary conditions $q\left(t_{i}\right)=q^{(i)}, q\left(t_{f}\right)=q^{(f)}$
iii) Several solutions $q_{\gamma}^{\mathrm{cl}}(t):=q_{\gamma}^{\mathrm{cl}}\left(t ; q^{(i)}, q^{(f)}, t_{f}, t_{i}\right)$.
iv) Expand in $z_{\gamma}(t)=q(t)-q_{\gamma}^{\mathrm{cl}}(t)$ up to second order.
v) Integrate the quantum fluctuations $z_{\gamma}(t)$.

Crash course on semiclassics (a bit technical)

Start with an action $R[q(t)]$ and the exact path integral

$$
\int \mathcal{D}[q(t)] \mathrm{e}^{\frac{i}{\hbar} R[q(t)]}
$$

i) Classical limit is defined by

$$
\delta_{q} R[q(t)]=0 \quad \text { (Hamilton principle!) }
$$

ii) Remember the boundary conditions $q\left(t_{i}\right)=q^{(i)}, q\left(t_{f}\right)=q^{(f)}$
iii) Several solutions $q_{\gamma}^{\mathrm{cl}}(t):=q_{\gamma}^{\mathrm{cl}}\left(t ; q^{(i)}, q^{(f)}, t_{f}, t_{i}\right)$.
iv) Expand in $z_{\gamma}(t)=q(t)-q_{\gamma}^{\mathrm{cl}}(t)$ up to second order.
v) Integrate the quantum fluctuations $z_{\gamma}(t)$.

$$
\int \mathcal{D}[q(t)] \mathrm{e}^{\frac{i}{\hbar} R[q(t)]} \simeq \sum_{\gamma}{\sqrt{W_{\gamma}} \mathrm{e}^{\frac{i}{\hbar} R_{\gamma}+i \frac{\pi}{4} \mu_{\gamma}} .}^{\text {ren }}
$$

Motivation: ESQPTs

Motivation: Scrambling

$$
t=2
$$

$t=25$

Motivation: Scrambling

$$
\begin{gathered}
\left.C(t)=\langle ||[\hat{V}(t), \hat{W}]|^{2}\right\rangle=\left\langle[\hat{V}(t), \hat{W}]^{\dagger}[\hat{V}(t), \hat{W}]\right\rangle \\
\text { Larkin, Ovchinnikov }(1969), \text { Kitaev }(2015) \\
\text { Maldacena, Shenker, Stanford }(2015) \ldots\left(\sim 5 \times 10^{3}\right)
\end{gathered}
$$

Motivation: Scrambling

$$
\left.C(t)=\left.\langle |[\hat{V}(t), \hat{W}]\right|^{2}\right\rangle=\left\langle[\hat{V}(t), \hat{W}]^{\dagger}[\hat{V}(t), \hat{W}]\right\rangle
$$

Larkin, Ovchinnikov (1969), Kitaev (2015),
Maldacena, Shenker, Stanford (2015) ... $\left(\sim 5 \times 10^{3}\right)$

Wilson, Galitski PRL (2017)

Motivation: Scrambling

$$
\left.C(t)=\left.\langle |[\hat{V}(t), \hat{W}]\right|^{2}\right\rangle=\left\langle[\hat{V}(t), \hat{W}]^{\dagger}[\hat{V}(t), \hat{W}]\right\rangle
$$

Larkin, Ovchinnikov (1969), Kitaev (2015),
Maldacena, Shenker, Stanford (2015) ... $\left(\sim 5 \times 10^{3}\right)$

Wilson, Galitski PRL (2017)
$C\left(t<t_{E}\right) \sim \mathrm{e}^{2 \lambda t}:$ quasiclassical

Motivation: Scrambling

$$
\left.C(t)=\left.\langle |[\hat{V}(t), \hat{W}]\right|^{2}\right\rangle=\left\langle[\hat{V}(t), \hat{W}]^{\dagger}[\hat{V}(t), \hat{W}]\right\rangle
$$

Larkin, Ovchinnikov (1969), Kitaev (2015),
Maldacena, Shenker, Stanford (2015) ... $\left(\sim 5 \times 10^{3}\right)$

Wilson, Galitski PRL (2017)
$C\left(t<t_{E}\right) \sim \mathrm{e}^{2 \lambda t}$: quasiclassical Saturation: semiclassical!

Want to study the interplay between criticallity and scrambling?

Want to study the interplay between criticallity and scrambling?

We need semiclassical methods in Many-Body Hilbert (Fock) space!!

Want to study the interplay between criticallity and scrambling?

We need semiclassical methods in Many-Body Hilbert (Fock) space!!
.... but let us take it easy....

The Bose-Hubbard model

States

Dynamics

$$
\hat{H}=\sum_{j}\left[E_{j} \hat{a}_{j}^{\dagger} \hat{a}_{j}-J\left(\hat{a}_{j}^{\dagger} \hat{a}_{j+1}+\hat{a}_{j+1}^{\dagger} \hat{a}_{j}\right)+U \hat{a}_{j}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{j} \hat{a}_{j}\right]
$$

Transition probabilities in Fock space

Transition probabilities in Fock space

Again, a fundamental physical question:
If we know that at t_{i} the system has occupations $n^{(i)}$, what is the probability that at t_{f} it has occupations $n^{(f)}$??

Transition probabilities in Fock space

Again, a fundamental physical question:

If we know that at t_{i} the system has occupations $n^{(i)}$, what is the probability that at t_{f} it has occupations $n^{(f)}$??

Again, the postulates of Quantum mechanics directly give the answer:

- Quantum states evolve as $\left|\phi\left(t_{f}\right)\right\rangle=\hat{U}\left(t_{f}, t_{i}\right)\left|\phi\left(t_{i}\right)\right\rangle$
- Transition amplitude K (fin. ; in.) $=\left\langle n^{(f)}\right| \hat{U}\left(t_{f}, t_{i}\right)\left|n^{(i)}\right\rangle$
- Transition probability P (fin.; in.) $=\mid\left. K($ fin. ; in. $)\right|^{2}$

Transition probabilities in Fock space

Again, a fundamental physical question:

If we know that at t_{i} the system has occupations $n^{(i)}$, what is the probability that at t_{f} it has occupations $n^{(f)}$??

Again, the postulates of Quantum mechanics directly give the answer:

- Quantum states evolve as $\left|\phi\left(t_{f}\right)\right\rangle=\hat{U}\left(t_{f}, t_{i}\right)\left|\phi\left(t_{i}\right)\right\rangle$
- Transition amplitude K (fin. ; in.) $=\left\langle n^{(f)}\right| \hat{U}\left(t_{f}, t_{i}\right)\left|n^{(i)}\right\rangle$
- Transition probability P (fin.; in.) $=\mid\left. K($ fin. ; in. $)\right|^{2}$

K(fin. ; in.) for Fock states?, van Vleck-Gutzwiller for fields?

van Vleck-Gutzwiller propagator for discrete quantum fields

Engl et al PRL (2014), Phil. Trans. Roy. Soc. (2016), PRE (2015), PRA (2018) (Fermions!!)

van Vleck-Gutzwiller propagator for discrete quantum fields

Wave equation for particles and $\hbar \rightarrow 0$ use classical trajectories

Engl et al PRL (2014), Phil. Trans. Roy. Soc. (2016), PRE (2015), PRA (2018) (Fermions!!)

van Vleck-Gutzwiller propagator for discrete quantum fields

Wave equation for particles and $\hbar \rightarrow 0$ use classical trajectories

Quantum dynamics of fields and $N \rightarrow \infty$ use solutions of classical field equation

Start with a path integral and...
Do as Gutzwiller! (easier to say than to do)

Tom

Engl et al PRL (2014), Phil. Trans. Roy. Soc. (2016), PRE (2015), PRA (2018) (Fermions!!)

Semiclassical propagator for (Bose-) Hubbard models

$$
K\left(\mathbf{n}^{(f)}, \mathbf{n}^{(i)}, t\right)=\left\langle\mathbf{n}^{(f)}\right| \mathrm{e}^{-\frac{\mathrm{i}}{\hbar} \hat{H} t}\left|\mathbf{n}^{(i)}\right\rangle \approx \sum_{\gamma: \mathbf{n}^{(i)} \rightarrow \mathbf{n}^{(f)}} \mathcal{A}_{\gamma} \mathrm{e}^{\frac{i}{\hbar} R_{\gamma}\left(\mathbf{n}^{(f)}, \mathbf{n}^{(i)}, t\right)}
$$

Semiclassical propagator for (Bose-) Hubbard models

path integral, $N \rightarrow \infty$, stationary phase approximation

$$
K\left(\mathbf{n}^{(f)}, \mathbf{n}^{(i)}, t\right)=\left\langle\mathbf{n}^{(f)}\right| \mathrm{e}^{-\frac{i}{\hbar} \hat{H} t}\left|\mathbf{n}^{(i)}\right\rangle \stackrel{\downarrow}{\approx} \sum_{\gamma: \mathbf{n}^{(i)} \rightarrow \mathbf{n}^{(f)}} \mathcal{A}_{\gamma} \mathrm{e}^{\frac{i}{\hbar} R_{\gamma}\left(\mathbf{n}^{(f)}, \mathbf{n}^{(i)}, t\right)}
$$

Semiclassical propagator for (Bose-) Hubbard models

$$
K\left(\mathbf{n}^{(f)}, \mathbf{n}^{(i)}, t\right)=\left\langle\mathbf{n}^{\text {path integral, } N \rightarrow \infty, \text { stationary phase approximation }}\right| \mathrm{e}^{-\frac{\mathrm{i}}{\hbar} \hat{H} t}\left|\mathbf{n}^{(i)}\right\rangle \stackrel{\downarrow}{\approx} \sum_{\gamma: \mathbf{n}^{(i)} \rightarrow \mathbf{n}^{(f)}} \mathcal{A}_{\gamma} \mathrm{e}^{\frac{\mathrm{i}}{\hbar} R_{\gamma}\left(\mathbf{n}^{(f)}, \mathbf{n}^{(i)}, t\right)}
$$

Classical trajectory $\gamma: \phi_{j}(s)=\sqrt{n_{j}(s)} \mathrm{e}^{i \theta_{j}(s)}$

$$
\mathrm{i} \hbar \frac{d \phi}{d s}=\frac{\partial H_{c l}}{\partial \phi^{*}}
$$

nonlinear mean-field equation (i.e GP)

Semiclassical propagator for (Bose-) Hubbard models

$$
K\left(\mathbf{n}^{(f)}, \mathbf{n}^{(i)}, t\right)=\left\langle\mathbf{n}^{\text {path integral, } N \rightarrow \infty, \text { stationary phase approximation }}\right| \mathrm{e}^{-\frac{i}{\hbar} \hat{H} t}\left|\mathbf{n}^{(i)}\right\rangle \stackrel{\downarrow}{\approx} \sum_{\gamma: \mathbf{n}^{(i)} \rightarrow \mathbf{n}^{(f)}} \mathcal{A}_{\gamma} \mathrm{e}^{\frac{i}{\hbar} R_{\gamma}\left(\mathbf{n}^{(f)}, \mathbf{n}^{(i)}, t\right)}
$$

Classical trajectory $\gamma: \phi_{j}(s)=\sqrt{n_{j}(s)} \mathrm{e}^{i \theta_{j}(s)}$

$$
\left|\phi_{j}(0)\right|^{2}=n_{j}^{(i)}+\frac{1}{2}
$$

$$
R_{\gamma}\left(\mathbf{n}^{(f)}, \mathbf{n}^{(i)}, t\right)=\int_{0}^{t} \mathrm{~d} s\left[\hbar \boldsymbol{\theta}_{\gamma}(s) \cdot \dot{\mathbf{n}}_{\gamma}(s)-H_{\mathrm{cl}}\left(\boldsymbol{\phi}_{\gamma}^{*}(s), \boldsymbol{\phi}_{\gamma}(s)\right)\right]
$$

Semiclassical propagator for (Bose-) Hubbard models

$$
K\left(\mathbf{n}^{(f)}, \mathbf{n}^{(i)}, t\right)=\left\langle\mathbf{n}^{\text {path integral, } N \rightarrow \infty, \text { stationary phase approximation }}\right| \mathrm{e}^{-\frac{\mathrm{i}}{\hbar} \hat{H} t}\left|\mathbf{n}^{(i)}\right\rangle \stackrel{\downarrow}{\approx} \sum_{\gamma: \mathbf{n}^{(i)} \rightarrow \mathbf{n}^{(f)}} \mathcal{A}_{\gamma} \mathrm{e}^{\frac{\mathrm{i}}{\hbar} R_{\gamma}\left(\mathbf{n}^{(f)}, \mathbf{n}^{(i)}, t\right)}
$$

Classical trajectory $\gamma: \phi_{j}(s)=\sqrt{n_{j}(s)} \mathrm{e}^{i \theta_{j}(s)}$

$R_{\gamma}\left(\mathbf{n}^{(f)}, \mathbf{n}^{(i)}, t\right)=\int_{0}^{t} \mathrm{~d} s\left[\hbar \boldsymbol{\theta}_{\gamma}(s) \cdot \dot{\mathbf{n}}_{\gamma}(s)-H_{\mathrm{cl}}\left(\phi_{\gamma}^{*}(s), \phi_{\gamma}(s)\right)\right]$

Many-Body interference at work: coherent backscattering
We know how to proceed...

Many-Body interference at work: coherent backscattering

We know how to proceed...

$$
P\left(n^{(f)}, t_{f} ; n^{(i)}, t_{i}\right)=\sum_{\gamma_{1}, \gamma_{2}} \sqrt{W_{\gamma_{1}} W_{\gamma_{2}}} \mathrm{e}^{\frac{i}{\hbar}\left(R_{\gamma_{1}}-R_{\gamma_{2}}\right)+i \frac{\pi}{4}\left(\mu_{\gamma_{1}}-\mu_{\gamma_{2}}\right)}
$$

and look for constructive interference!

Many-Body interference at work: coherent backscattering

We know how to proceed...

$$
P\left(n^{(f)}, t_{f} ; n^{(i)}, t_{i}\right)=\sum_{\gamma_{1}, \gamma_{2}} \sqrt{W_{\gamma_{1}} W_{\gamma_{2}}} \mathrm{e}^{\frac{i}{\hbar}\left(R_{\gamma_{1}}-R_{\gamma_{2}}\right)+i \frac{\pi}{4}\left(\mu_{\gamma_{1}}-\mu_{\gamma_{2}}\right)}
$$

and look for constructive interference!

$$
P(\text { fin. } \neq \text { in. })=P_{C}(\text { fin. ; in. })
$$

Many-Body interference at work: coherent backscattering

We know how to proceed...

$$
P\left(n^{(f)}, t_{f} ; n^{(i)}, t_{i}\right)=\sum_{\gamma_{1}, \gamma_{2}} \sqrt{W_{\gamma_{1}} W_{\gamma_{2}}} \mathrm{e}^{\frac{i}{\hbar}\left(R_{\gamma_{1}}-R_{\gamma_{2}}\right)+i \frac{\pi}{4}\left(\mu_{\gamma_{1}}-\mu_{\gamma_{2}}\right)}
$$

and look for constructive interference!

$$
\begin{aligned}
& P(\text { fin. } \neq \text { in. })=P_{C}(\text { fin. ; in. }) \\
& P(\text { fin. }=\text { in. })=P_{C}(\text { fin. }=\text { in. })
\end{aligned}
$$

Many-Body interference at work: coherent backscattering
We know how to proceed...

$$
P\left(n^{(f)}, t_{f} ; n^{(i)}, t_{i}\right)=\sum_{\gamma_{1}, \gamma_{2}} \sqrt{W_{\gamma_{1}} W_{\gamma_{2}}} \mathrm{e}^{\frac{i}{\hbar}\left(R_{\gamma_{1}}-R_{\gamma_{2}}\right)+i \frac{\pi}{4}\left(\mu_{\gamma_{1}}-\mu_{\gamma_{2}}\right)}
$$

and look for constructive interference!

$$
\begin{aligned}
& P(\text { fin. } \neq \text { in. })=P_{C}(\text { fin. ; in. }) \\
& P(\text { fin. }=\text { in. })=2 P_{C}(\text { fin. }=\text { in. })
\end{aligned}
$$

Many-Body interference at work: coherent backscattering
We know how to proceed...

$$
P\left(n^{(f)}, t_{f} ; n^{(i)}, t_{i}\right)=\sum_{\gamma_{1}, \gamma_{2}} \sqrt{W_{\gamma_{1}} W_{\gamma_{2}}} \mathrm{e}^{\frac{i}{\hbar}\left(R_{\gamma_{1}}-R_{\gamma_{2}}\right)+i \frac{\pi}{4}\left(\mu_{\gamma_{1}}-\mu_{\gamma_{2}}\right)}
$$

and look for constructive interference!

$$
\begin{aligned}
& P(\text { fin. } \neq \text { in. })=P_{C}(\text { fin. ; in. }) \\
& P(\text { fin. }=\text { in. })=2 P_{C}(\text { fin. }=\text { in. })
\end{aligned}
$$

For classical (GP) invariant under $\phi(s) \rightarrow \phi^{*}(t-s)$ and chaotic we predict a
coherent enhancement of the quantum probability of return!

Checking against numerics

And the scrambling....?

Rammensee, JDU, Richter PRL (2018)

Intermezzo
So, here is where we are:

Intermezzo

So, here is where we are:

- Initial fast scrambling is a signature of chaos
- The late saturation of the OTOCs is an interference effect

Intermezzo

So, here is where we are:

- Initial fast scrambling is a signature of chaos
- The late saturation of the OTOCs is an interference effect

Both can be lifted into the realm of many-body systems, where

Intermezzo

So, here is where we are:

- Initial fast scrambling is a signature of chaos
- The late saturation of the OTOCs is an interference effect

Both can be lifted into the realm of many-body systems, where

- fast scrambling appears due to instability of mean-field solutions, and
- saturation due to interference from different mean-field solutions

Intermezzo

So, here is where we are:

- Initial fast scrambling is a signature of chaos
- The late saturation of the OTOCs is an interference effect

Both can be lifted into the realm of many-body systems, where

- fast scrambling appears due to instability of mean-field solutions, and
- saturation due to interference from different mean-field solutions

And this is what we all know and love...

Intermezzo

So, here is where we are:

- Initial fast scrambling is a signature of chaos
- The late saturation of the OTOCs is an interference effect

Both can be lifted into the realm of many-body systems, where

- fast scrambling appears due to instability of mean-field solutions, and
- saturation due to interference from different mean-field solutions

And this is what we all know and love...

- In systems with a mean field limit.... ESQPTs are typical of (quasi) integrable regimes

Intermezzo

So, here is where we are:

- Initial fast scrambling is a signature of chaos
- The late saturation of the OTOCs is an interference effect

Both can be lifted into the realm of many-body systems, where

- fast scrambling appears due to instability of mean-field solutions, and
- saturation due to interference from different mean-field solutions

And this is what we all know and love...

- In systems with a mean field limit.... ESQPTs are typical of (quasi) integrable regimes
so...do we have scrambling around ESQPTs????

The model: atractive Lieb-Liniger

Hamiltonian in second quantization:

$$
\begin{aligned}
\hat{H} & =\int_{0}^{2 \pi} \mathrm{~d} \theta\left[\hat{\psi}^{\dagger}(\theta) \partial^{2} \hat{\psi}(\theta)-\frac{\pi \alpha}{2} \hat{\psi}^{\dagger}(\theta) \hat{\psi}^{\dagger}(\theta) \hat{\psi}(\theta) \hat{\psi}(\theta)\right] \\
& =\sum_{k} k^{2} \hat{a}_{k}^{\dagger} \hat{a}_{k}-\frac{\alpha}{4} \sum_{k l m n} \delta_{k+l, m+n} \hat{a}_{k}^{\dagger} \hat{a}_{l}^{\dagger} \hat{a}_{m} \hat{a}_{n}
\end{aligned}
$$

- describes one-dimensional bosonic gas with δ-like short-range interactions (only s-wave scattering)

- model is integrable for periodic boundary conditions
\rightarrow infinite number of conservation laws (including number + momentum conservation)
\rightarrow look for reduced system by truncating k-summation

Effect of truncation

$$
N=20
$$

$$
k_{\max }=\infty
$$

Sykes et. al. Phys. Rev. A76,063620

- Number and momentum conservation is not destroyed by truncation
- System is again integrable for $k_{\max }=1$ (commonly used)
- Low-energy spectrum is quite similar, i.e. interesting properties are preserved

Effect of truncation

$$
N=20
$$

$$
k_{\max }=2
$$

Sykes et. al.,
Phys. Rev. A76,063620

- Number and momentum conservation is not destroyed by truncation
- System is again integrable for $k_{\max }=1$ (commonly used)
- Low-energy spectrum is quite similar, i.e. interesting properties are preserved

Effect of truncation

$$
N=20
$$

$$
k_{\max }=1
$$

Sykes et. al.,
Phys. Rev. A76,063620

- Number and momentum conservation is not destroyed by truncation
- System is again integrable for $k_{\max }=1$ (commonly used)
- Low-energy spectrum is quite similar, i.e. interesting properties are preserved

Scheme of SC treatment of $\hat{\mathrm{H}}_{3}$

- find classical Hamiltonian by symmetrizing operators and replacing

$$
\begin{aligned}
& \hat{a}_{k} \rightarrow \phi_{k}=\frac{1}{\sqrt{2}}\left(q_{k}+\mathrm{i} p_{k}\right)=\sqrt{n_{k}} \mathrm{e}^{\mathrm{i} \theta_{k}} \\
& \hat{a}_{k}^{\dagger} \rightarrow \phi_{k}^{*}=\frac{1}{\sqrt{2}}\left(q_{k}-\mathrm{i} p_{k}\right)=\sqrt{n_{k}} \mathrm{e}^{-\mathrm{i} \theta_{k}}
\end{aligned}
$$

- eliminate n_{-1} and n_{1} in favor of the COM

$$
\tilde{N}=n_{-1}+n_{0}+n_{1}, \quad \tilde{L}=n_{1}-n_{-1}
$$

- quantize resulting Hamiltonian using torus quantization

$$
\begin{aligned}
& A=S(E, \tilde{N}, \tilde{L})=2 \pi \hbar(n+\nu / 4) \\
& \nu: \text { Maslov index } \\
& n=0,1, \ldots
\end{aligned}
$$

(Re-)Quantization of \mathbf{H}_{3}

- Main difficulty: identification of the primitive orbits on the 3 -Torus
- Correct quantization rules for \tilde{N} and \tilde{L} :

$$
\tilde{N}=N+\frac{3}{2}, \quad N=0,1, \ldots, \quad \tilde{L}=L \in[-N, N]
$$

- For the rest of the talk: $L=0$
- Rescaled energy:

$$
\begin{gathered}
\omega(z, \varphi)=(1-z)-\frac{\tilde{\alpha}}{4}\left[\frac{(1-z)^{2}}{2}+4 z(1-z) \cos ^{2} \varphi\right] \\
z=\frac{n_{0}}{\tilde{N}}, \quad \tilde{\alpha}=\tilde{N} \alpha, \quad \omega=\frac{E}{\tilde{N}}+c(\tilde{N}, \tilde{\alpha})
\end{gathered}
$$

- Rescaled Poisson bracket: $\{z, \varphi\}=\frac{1}{\tilde{N}}=\hbar_{\text {eff }}$

Phase space structure

$$
\omega(z, \varphi)=(1-z)-\frac{\tilde{\alpha}}{4}\left[\frac{(1-z)^{2}}{2}+4 z(1-z) \cos ^{2} \varphi\right]
$$

Phase space structure

$$
\omega(z, \varphi)=(1-z)-\frac{\tilde{\alpha}}{4}\left[\frac{(1-z)^{2}}{2}+4 z(1-z) \cos ^{2} \varphi\right]
$$

Phase space structure

$$
\omega(z, \varphi)=(1-z)-\frac{\tilde{\alpha}}{4}\left[\frac{(1-z)^{2}}{2}+4 z(1-z) \cos ^{2} \varphi\right]
$$

Phase space structure

$$
\omega(z, \varphi)=(1-z)-\frac{\tilde{\alpha}}{4}\left[\frac{(1-z)^{2}}{2}+4 z(1-z) \cos ^{2} \varphi\right]
$$

Phase space structure

$$
\omega(z, \varphi)=(1-z)-\frac{\tilde{\alpha}}{4}\left[\frac{(1-z)^{2}}{2}+4 z(1-z) \cos ^{2} \varphi\right]
$$

Phase space structure

$$
\omega(z, \varphi)=(1-z)-\frac{\tilde{\alpha}}{4}\left[\frac{(1-z)^{2}}{2}+4 z(1-z) \cos ^{2} \varphi\right]
$$

Phase space structure

$$
\omega(z, \varphi)=(1-z)-\frac{\tilde{\alpha}}{4}\left[\frac{(1-z)^{2}}{2}+4 z(1-z) \cos ^{2} \varphi\right]
$$

Phase space structure

$$
\omega(z, \varphi)=(1-z)-\frac{\tilde{\alpha}}{4}\left[\frac{(1-z)^{2}}{2}+4 z(1-z) \cos ^{2} \varphi\right]
$$

Phase space structure

$$
\omega(z, \varphi)=(1-z)-\frac{\tilde{\alpha}}{4}\left[\frac{(1-z)^{2}}{2}+4 z(1-z) \cos ^{2} \varphi\right]
$$

Energy quantization

$$
\frac{1}{2 \pi} \oint \mathrm{~d} \varphi(1-z(\omega, \tilde{N}))=\frac{k+\frac{1}{2}}{\tilde{N}}=\hbar_{\mathrm{eff}}\left(k+\frac{1}{2}\right)
$$

Energy quantization

$$
\frac{1}{2 \pi} \oint \mathrm{~d} \varphi(1-z(\omega, \tilde{N}))=\frac{k+\frac{1}{2}}{\tilde{N}}=\hbar_{\mathrm{eff}}\left(k+\frac{1}{2}\right)
$$

Energy quantization

$$
\frac{1}{2 \pi} \oint \mathrm{~d} \varphi(1-z(\omega, \tilde{N}))=\frac{k+\frac{1}{2}}{\tilde{N}}=\hbar_{\mathrm{eff}}\left(k+\frac{1}{2}\right)
$$

Comparison with exact diagonalization

Excitation spectrum (numerical ground state)

Dots: exact Lines: SC
$N=20$

Comparison with exact diagonalization

Excitation spectrum (numerical ground state)

Dots: exact Lines: SC
$N=200$

Comparison with exact diagonalization

Excited state quantum phase transition

A QPT of $k^{\text {th }}$ order is related to a discontinuity in the $k^{\text {th }}$ derivative of the energy E_{n}

Excited state quantum phase transition

Interpretation of discontinuity:

$$
\begin{aligned}
\frac{\mathrm{d} E_{k}}{\mathrm{~d} \tilde{\alpha}} & =\left\langle\psi_{k}\right| \frac{\mathrm{d} \hat{H}}{\mathrm{~d} \tilde{\alpha}}\left|\psi_{k}\right\rangle \\
& =-\frac{\pi}{2 \tilde{N}} \int_{0}^{2 \pi} \mathrm{~d} \theta\left\langle\psi_{k}\right| \hat{\psi}^{\dagger}(\theta) \hat{\psi}^{\dagger}(\theta) \hat{\psi}(\theta) \hat{\psi}(\theta)\left|\psi_{k}\right\rangle \\
& =-\frac{\pi^{2}}{\tilde{N}}\left\langle\psi_{k}\right| \hat{\psi}^{\dagger}(0) \hat{\psi}^{\dagger}(0) \hat{\psi}(0) \hat{\psi}(0)\left|\psi_{k}\right\rangle \\
& =-\frac{\pi^{2}}{\tilde{N}}\left(\frac{N}{2 \pi}\right)^{2} g_{2}^{(k)}(\tilde{\alpha})
\end{aligned}
$$

$g_{2}^{(k)}$: normalized local two-point correlation of $k^{\text {th }}$ state
\Rightarrow sudden increase of pair correlation at $\tilde{\alpha}=\tilde{\alpha}_{\text {cr }}^{(k)}>1$
\Rightarrow bunching of particles/bound state formation

Excited state quantum phase transition

Mesoscopic (large-N) aspects of first excitation

- Minimum involves a vibration (ground state) and the libration closest to the separatrix
- For $N \gg 1$ this situation occurs for $\tilde{\alpha} \approx 1$, i.e. separatrix enters allowed phase space only for $\varphi \ll 1$
- Action integrals can be approximated for small angles
- Equation for the gap minimum has universal scaling:

$$
\begin{aligned}
\tilde{\alpha}_{\min } & =1+\left(\frac{21 \pi}{32 q_{\infty}}\right)^{\frac{2}{3}} \cdot \tilde{N}^{-\frac{2}{3}} \\
\Delta E_{\min }(\tilde{N}) & =\frac{2}{7}\left(\frac{21 \pi}{32 q_{\infty}}\right)^{\frac{4}{3}} \Delta \mu_{\infty} \cdot \tilde{N}^{-\frac{1}{3}}
\end{aligned}
$$

with universal constants $q_{\infty}=0.525 \ldots, \Delta \mu_{\infty}=0.953 \ldots$

Energy spacing near transitions

Fix $\tilde{\alpha}>1$ and calculate energies near the separatrix.

- Classical orbits close to a separatrix bypass hyperbolic fixed points
- Traversal time of an orbit on the separatrix diverges logarithmically
- Largest contribution to action comes from neighborhood of the fixed points \rightarrow quadratic expansion needed

Energy spacing near transitions

Generic hamiltonian after canonical transformation:

$$
\begin{aligned}
& H_{\mathrm{FP}}=\frac{1}{2}\left((\lambda \cdot p)^{2}-q^{2}\right), \\
\Delta S[E] & =|S[E]-S[0]| \\
& =\frac{1}{\lambda} \int_{-\epsilon}^{\epsilon} \mathrm{d} q \sqrt{|E|+q^{2}} \\
& =-\frac{1}{\lambda}|E| \log |E|+\mathcal{O}(E)
\end{aligned}
$$

Inverting $\Delta S[E]=2 \pi \hbar(k+\mu)$ involves Lambert-W function. But for very small E it yields

$$
\Delta E=\frac{2 \pi \hbar \lambda}{-\log (\hbar)} \stackrel{3 \text {-site }}{=} \frac{2 \pi \sqrt{\tilde{\alpha}-1}}{\tilde{N} \log \tilde{N}}
$$

The log time scale

this we know...

The log time scale

Large- N energy scaling at the separatrix suggests time scale

$$
\tau \propto \frac{2 \pi \hbar_{\mathrm{eff}}}{\Delta E}=\frac{\log (N)}{\lambda}
$$

- Resembles Ehrenfest time $-\frac{1}{\lambda} \log \hbar$ in chaotic systems, where λ is the Lyapunov exponent
- Link between chaos and instabilities in integrable systems: SCRAMBLING!!!
- Calculate scrambling time as an indicator for breakdown of classical description Geiger, JDU, Richter PRL (2021)

Log time as scrambling time: numerical check

Scheme for numerical calculation:

- Calculate one-body density matrix

$$
\rho_{i j}=\frac{1}{N}\langle\psi(t)| \hat{a}_{i}^{\dagger} \hat{a}_{j}|\psi(t)\rangle
$$

for the time evolved condensate

$$
|\psi(t)\rangle=\mathrm{e}^{-\mathrm{i} t \hat{H}}|N\rangle
$$

- Calculate von Neumann-entropy

$$
S_{1}(t)=-\operatorname{Tr} \rho \log \rho
$$

- Define scrambling time t_{s} as the time needed to reach a certain threshold value
- Do this for different particle numbers

Scrambling time (numerical results)

$t_{\mathrm{sc}} \sim \frac{\log (\tilde{N})}{\sqrt{\tilde{\alpha}-1}}$
$\tilde{\alpha}=2$
\tilde{N} varying

Scrambling time (numerical results)

In real time...

In real time...

Wait a second... what are these revivals doing there?

In real time...

Wait a second... what are these revivals doing there?
These are NOT related with the (astronomical) recurrence times...

What about the OTOCs???

What about the OTOCs???

Coexistence of fast initial scrambling and long-time revivals

What about the OTOCs???

Coexistence of fast initial scrambling and long-time revivals long-time not that long at all! (only logarithmic with N)

The log time scale reconsidered

this we know...

The log time scale reconsidered

 this we know...

The log time scale reconsidered
this we know...

surprise!!

Despite the divergence, the spectrum is (locally) asymptotically homogeneous
\rightarrow perfect coherent revivals at the log (not recurrence) time scale!!

Robust?

Go from 3-site to 5 -site (non integrable)

Robust?

Go from 3-site to 5 -site (non integrable)

YES

Robust?

Go from 3-site to 5 -site (non integrable)

Robust?

Go from 3-site to 5 -site (non integrable)

YES

Summary I: about semiclassics

- (Truly) semiclassical methods a la Gutzwiller account for interference phenomena

Summary I: about semiclassics

- (Truly) semiclassical methods a la Gutzwiller account for interference phenomena
- Please remember that! (semiclassics is NOT classics)

Summary I: about semiclassics

- (Truly) semiclassical methods a la Gutzwiller account for interference phenomena
- Please remember that! (semiclassics is NOT classics)
- Such ideas can be lifted to Fock space

Summary I: about semiclassics

- (Truly) semiclassical methods a la Gutzwiller account for interference phenomena
- Please remember that! (semiclassics is NOT classics)
- Such ideas can be lifted to Fock space
- They account for fast scrambling and saturation of OTOCs in the chaotic case

Summaryll: about this talk

Our dear ESQPTs require (quasi) integrability, so we have:

Summaryll: about this talk

Our dear ESQPTs require (quasi) integrability, so we have:

- Found an ESQPT for a truncated Lieb-Liniger model

Summaryll: about this talk

Our dear ESQPTs require (quasi) integrability, so we have:

- Found an ESQPT for a truncated Lieb-Liniger model
- Extended the (integrable) torus quantization into Fock space

Summaryll: about this talk

Our dear ESQPTs require (quasi) integrability, so we have:

- Found an ESQPT for a truncated Lieb-Liniger model
- Extended the (integrable) torus quantization into Fock space
- Studied the discrete spectrum near separatrices

Summaryll: about this talk

Our dear ESQPTs require (quasi) integrability, so we have:

- Found an ESQPT for a truncated Lieb-Liniger model
- Extended the (integrable) torus quantization into Fock space
- Studied the discrete spectrum near separatrices

and found

Summaryll: about this talk

Our dear ESQPTs require (quasi) integrability, so we have:

- Found an ESQPT for a truncated Lieb-Liniger model
- Extended the (integrable) torus quantization into Fock space
- Studied the discrete spectrum near separatrices
and found
- Fast initial scrambling due to local instability

Summaryll: about this talk

Our dear ESQPTs require (quasi) integrability, so we have:

- Found an ESQPT for a truncated Lieb-Liniger model
- Extended the (integrable) torus quantization into Fock space
- Studied the discrete spectrum near separatrices
and found
- Fast initial scrambling due to local instability
- Late time revivals due to asymptotically homogeneous but discrete spectrum, and...

Summaryll: about this talk

Our dear ESQPTs require (quasi) integrability, so we have:

- Found an ESQPT for a truncated Lieb-Liniger model
- Extended the (integrable) torus quantization into Fock space
- Studied the discrete spectrum near separatrices
and found
- Fast initial scrambling due to local instability
- Late time revivals due to asymptotically homogeneous but discrete spectrum, and...

A unique SHORT time scale $\sim \log N$ ruling the initial scrambling, the breaking of quantum-classical correspondence and coherent revivals signaling re-entrant information

H. Hummel, B. Geiger, JDU, and K. Richter "Reversible quantum information spreading in many-body systems near criticallity"PRL 123, 160401 (2019)

