

ISRS Collaboration Meeting and Physics workshop 19–20 Jun 2025

Ion Test Bench and the New LOI for the installation of ISRS prototypes at ISOLDE (INTC-I-283)

Ismael Martel

University of Huelva

➤ LOI: Installation and commissioning of the ISRS Ion Test-bench and Multi-Harmonic Buncher at HIE-ISOLDE

- New LOI submitted to the INTC in January 2025
- Continue the ISRS R&D activity with the installation of MHB and IONTB at ISOLDE during LS3 period 2026-2028.

Status

- The LOI was approved by the INTC.
- The ISCC requires detail information of the setups and safety approval.
 - ✓ ISCC 6 March 2025
 - ✓ ISCC 18 June 2025
 - ✓ Next ISCC November 2025

Funding applications for 2026-2028 (LS3)

- Funding from ISRS collaboration is welcome!!
 - ✓ Spain Gov. application U. Huelva U. Valencia ~ 1 MEuro
 - ✓ INTERREG Spain –Portugal: UHU LIP (Lisbon) ~ 4.5 MEuro

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Letter of Intent to the ISOLDE and Neutron Time-of-Flight Committee

Installation and commissioning of the ISRS Ion Test-bench and Multi-Harmonic Buncher at HIE-ISOLDE

9 January 2025

J.L. Aguado¹, L. Acosta², M.J.G. Borge², R. Berjillos¹, J.A. Briz³, I. Bustinduy⁴, J. Cederkall⁵, Y. Fontenla⁶, L.M. Fraile³, C. García-Ramos¹, J.E. García-Ramos¹, J. Giner-Navarro⁶, D. Gómez-Domínguez¹, J. Gómez-Galán¹, C.A. González-Cordero¹, C. Guazzoni⁷, A. Heinz⁸, A. Illana³, B. Jonson⁸, G. Kirby¹, T. Kurtukian-Nieto², I. Martel¹, Daniel José Marín-Lambarrí⁹, J. Mas-Balbuena¹⁰, J.L. Muñoz⁴, E. Nacher¹¹, B. Olaizola², J. Resta-López⁶, J. Sánchez-Segovia¹, A.M. Sánchez-Benítez¹, S. Sánchez-Navas², M. Sánchez-Raya¹, F. Taft⁶, O. Tengblad², F. Torabi¹.

- 1. Departamento de Ciencias Integradas, Universidad de Huelva, Spain.
- 2. Instituto de Estructura de la Materia, CSIC, Madrid, Spain.
- 3. Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Spain.
- 4. ESS-BILBAO, Bilbao, Spain.
- $5. \ \ Department \ of \ Physics, \ Lund \ University, \ Sweden.$
- 6. ICMUV, Instituto de Ciencia de Materiales, Universidad de Valencia, Spain.
- 7. Politecnico di Milano, DEIB and INFN, Sezione di Milano, Milano, Italy.
- 8. Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
- 9. Instituto de Física, UNAM, Mexico.
- 10. Instituto de Ciencias Nucleares, UNAM, Mexico.
- 11. Instituto de Física Corpuscular, CSIC, Valencia, Spain.

Spokesperson(s):

I. Martel (<u>imartel@uhu.es</u>), T. Kurtukian-Nieto (<u>Teresa.Kurtukian@csic.es</u>), I. Bustinduy (<u>ibon.bustinduy@essbilbao.org</u>), J. Resta (<u>Javier2.Resta@uv.es</u>)

Local contact: Jose Alberto Rodríguez (alberto.rodriguez@cern.ch)

ISCC meeting, March 2025, minutes

"The following additional information is requested so that the proposal could be discussed again at a future ISCC meeting:

- 1. Additional technical details on the multi-harmonic buncher and a planning scenario for implementing the device. The latter concerns the implementation and characterisation in the linac, as well as potential deployment strategies should there be negative consequences for certain beams/experiments that prevent its permanent inclusion in the machine.
- **2. Whether the implementation of the Test Bench was permanent or for a limited duration**, and what **effect** this might have on the **use of flexible setups** that have been deployed at XT03 in the past.
- 3. Any significant safety concerns that might arise from an initial safety audit which must be undertaken. The proponents should contact EP safety about this issue as soon as possible.
- 4. A better understanding of the hall space required and the estimated timelines."

MHB:

- Do not present important issues
- It was suggested to be decoupled from IONTB so it could move forward

IONTB:

- Beam transport and mechanical integration completed
- Quads from CERN pool selected
- Initial Safety Declaration (ISD) first draft sent last 13 June

Already in contact with ISOLDE team and preparing the information for next ISCC meeting in November.

> ISRS: ISOLDE SUPERCONDUCTING RECOIL SEPARATOR

Recoil separator with unprecedent mass resolving power and acceptance

• Li - Ra isotopes, E= 5-10 MeV/u

EBIS MULTI HARMONIC BUNCHER

MHB: Multi Harmonic Buncher

✓ Required for TOF experiments

LINAC

HIE-ISOLDE

TEST COMBINED OPERATION:

EBIS

Reaction

chamber

Ion Beam

- MHB
- HIE-ISOLDE linac
- REACTION CHAMBER
- MAGDEM
- FOCAL PLANE DETECTOR

Injection

system

IONTB: Ion Test Bench

ISRS PROTOTYPES

- ✓ MAGDEM: prototype of nested Superconducting Magnet for ISRS (dipole + quad)
- ✓ IONTB: Complete bench including reaction chamber, MAGDEM, focusing system, focal plane
- ✓ Prove MAGDEM performance & ISRS experimental concepts

✓ Single cavity using modern solid state RF amplifiers
 ✓ Reduce HIE-ISOLDE frequency to < 10 MHz / 100 ns

✓ Improve IONTB and ISRS (future) performance.

✓ Can operate as a linear spectrometer, but limited mass resolution and acceptance.

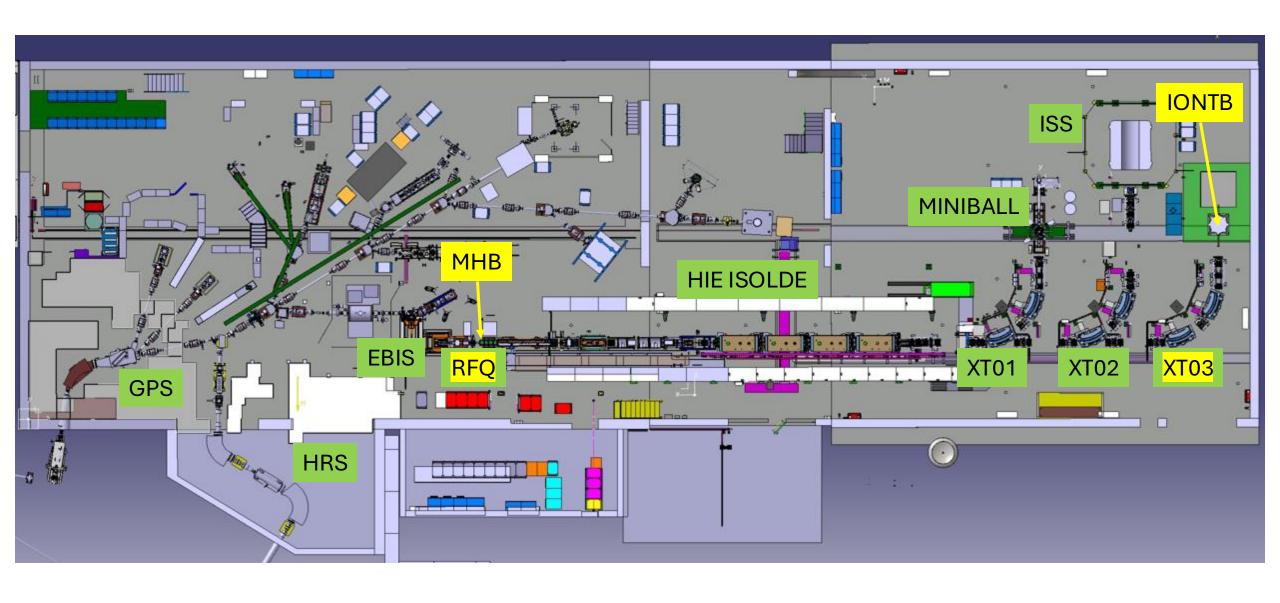
Focal plane detector

FFAG Cell (F-D-F)

Extraction

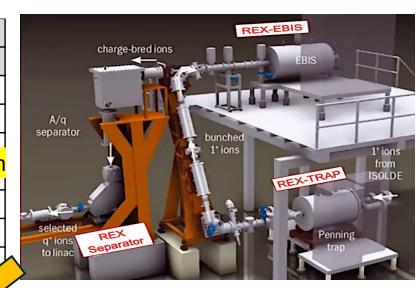
system

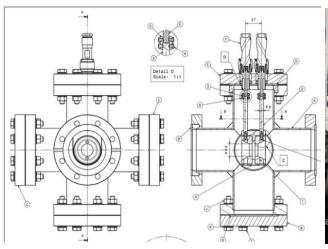
MAGDEM

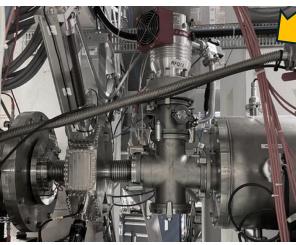

unit

ISRS

~ 3.5 m

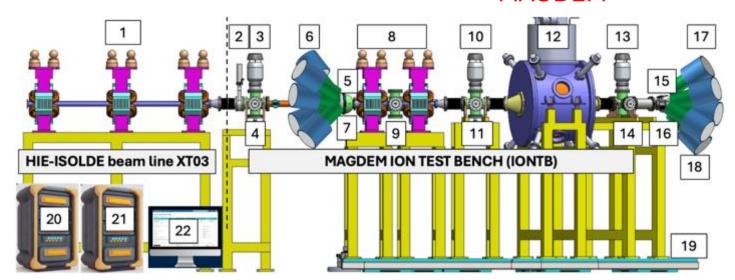

operate as a linear spectrometer →
"ISOLDE
Superconducting Linear
Spectrometer" ISLS


> MHB & IONTB AT ISOLDE HALL

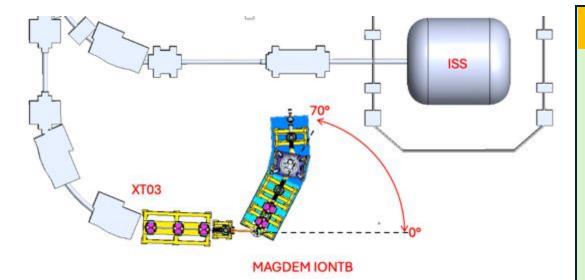


> MULTI HARMONICS BUNCHER

			20	25			20	26			20	27			20	28	
ACTIVITY	INSTITUTE	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1. BEAM DESIGN AND INTEGRATION STUDIES	ESS-BILBAO																
2. COMMISSIONING at BILBAO	ESS-BILBAO																
3. MHB VALIDATION	ESS-BILBAO													7			
4. DOCUMENTATION	ESS-BILBAO						+				LS3			De	etai	ll p	<mark>lan</mark>
5. ISOLDE STUDY SETUP	MADRID/HUELVA													Q;	3-Q	<mark>4</mark> -	
6. TRANSPORT/INSTALLATION	ESS-BILBAO													<mark>20</mark>) <mark>27</mark>		
7. COMMISSIONING HIE-ISOLDE	ISOLDE																



- Already of existing 4-way cross → MHB
- MHB design: electrodes can be removed → no beam obstacles/impact on experiments
- **Equipment:** 6-way cross + RF power amplifier
- **Space:** Elect. crate for RF power supply
- Safety: ISD submitted on June 13.
- Installation plan
 - ✓ Equipment first tested & commissioned at ESS
 - ✓ ISOLDE: details to be developed with local group (in progress).
 - ✓ TDR preparation
- Test planned: directly at HIE, during LS3.

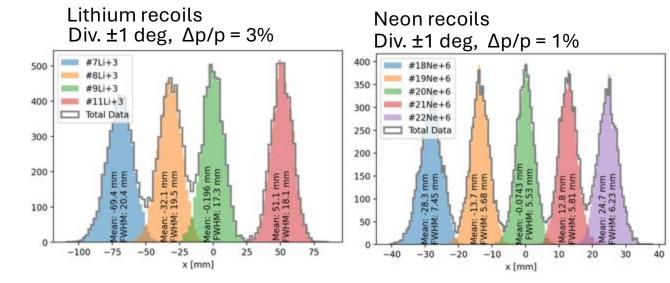

> ION TEST BENCH, THE FIRST CONCEPT

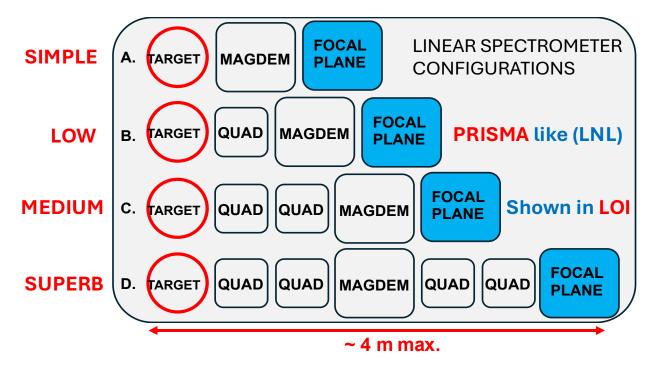
MAGDEM

- 1. HIE-ISOLDE triplet/XT03
- 2. Beam valve
- 3. Diff. pumping < 10-7mb
- 4. Beam diagnostics
- 5. Reaction chamber (RC)
- 6. RC-Gamma array
- 7. RC-particle detector array
- 8. Quadrupole doublet
- 9. Beam diagnostics
- 10. Vacuum system
- 11. Beam diagnostics
- 12. MAGDEM (Dipole+ quad)

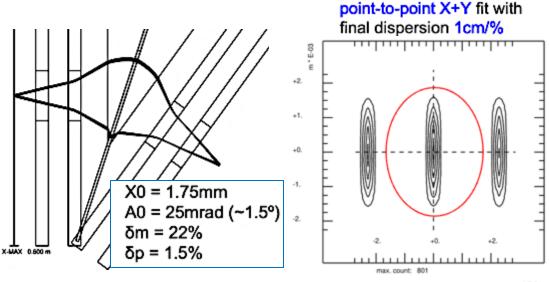
- 13. Vacuum system
- 14. Beam diagnostics
- 15. Focal plane chamber (FP)
- 16. FP-particle detector array
- 17. FP-Gamma array
- 18. Beam dump
- 19. Rotary platform
- 20. Data acquisition and control (DAC) hardware
- 21. Machine & personal protection system (MPS & PPS) hardware
- 2. DAC-Software

2. IONTB & MHB: Improvements gained

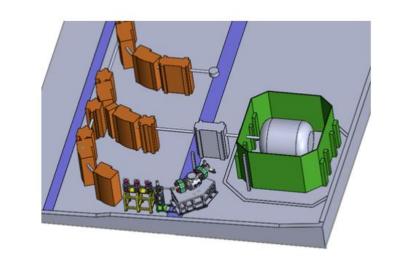

- > MHB -> TOF experiments at HIE-ISOLDE
- ➤ IONTB + MHB Physics experiments @ XT03 complementary to ISS and MINIBALL using gamma-particle correlations
- Performance better than previous HiFi project
- Low, Medium and High mass resolution configurations
- Reduced footprint to avoid interaction with ISS
- Possibility to rotate up to 70°
- Most experiments: zero degree


> ION TEST BENCH OPTIMISATION

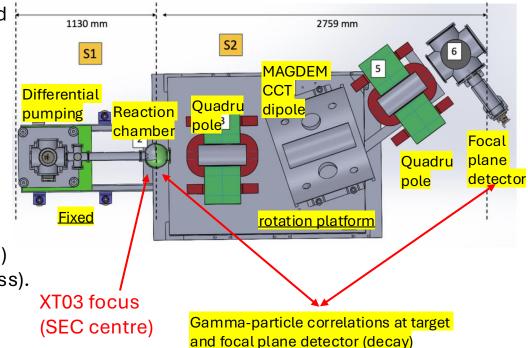
- Optimisation work
- BMAD (Univ. Valencia) + GICOSY (IEM, CSIC, Madrid)
- Small footprint ~ 4 m max (Univ. Huelva)
- Rejection of primary beam
- Ancillary detectors \rightarrow gamma-particle correlations
- Tagging on selec. react. fragments/Focal plane decay
 - > Isotopic separation
 - \triangleright Acceptance dP/P $\delta\theta$
- Most experiments at 0°, rotate up to 70° possible
- Combine IONTB with MHB for TOF → improved PID


Example for (d,p) (d,n) (t,p) (t,d)... reactions

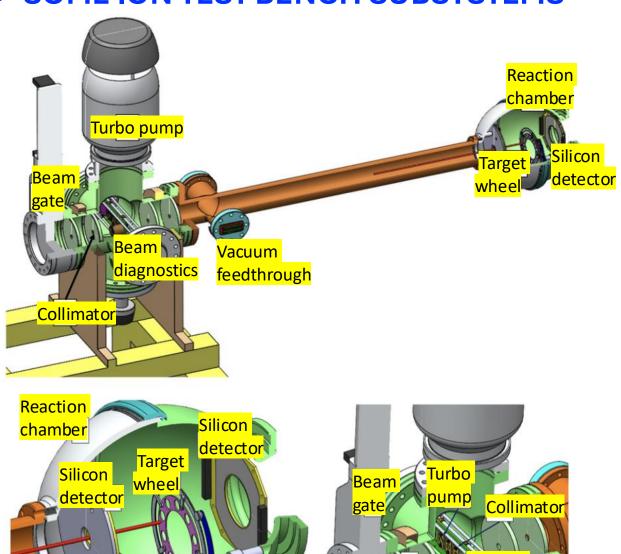
Config C. results BMAD- MEDIUM (0.3 cm/%)

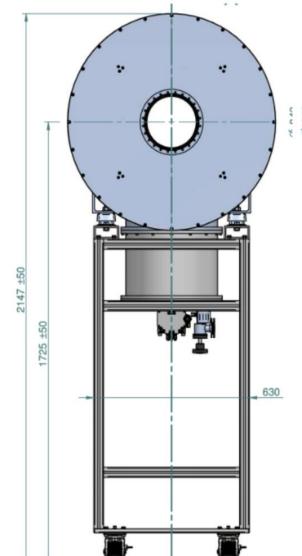


Config D. results GICOSY - SUPERB (1 cm/%)



> ION TEST BENCH FINAL SETUP


			20	25			20	26			20	27			20	28			
ACTIVITY	INSTITUTE	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4		
1. BEAM TRANSPORT AND INTEGRATION STUDIES	VALENCIA-MADRID- HUELVA																		
2. ACQUISITION OF SUBSYSTEMS	HUELVA-MADRID																		
3. INTEGRATION LAB-UHU	HUELVA															[Det	ail	pla
4. OFF-LINE TESTS LAB-UHU	HUELVA							+			L	S 3					Q 3-	Q4	
5. TRANSPORT/COMMISSIONING CMAM	MADRID																202	7	
6. ON-LINE TESTS CMAM	MADRID)			
7.TRANSPORT/COMMISSIONING HIE-ISOLDE	ISOLDE																		


- "PRISMA (LNL, Italy)" config. Transport calculations (BMAD, GCOSY) and mechanical integration converged:
 - ✓ Quads from CERN-pool
 - ✓ Space: L 3 m; W 1 m; H 2.3 m + Elec. CRATE
- Selectivity: Scatt. angle (target) + Βρ (dipole) + (TOF(A) + E-loss (Z)).
- Aim for "permanent" setup (ISOLDE SC Linear Spectrometer) ← → SEC
- Safety: ISD submitted on June 13. → No LHe refilling needed
- TDR preparation → Still purchasing equipment (June 2026)
- Installation plan
 - ✓ Equipment first tested/comm. at stable beam facility: CMAM (Madrid)
 - ✓ **HIE-ISOLDE: details** to be developed with the local group (in progress).
- Day one test experiment: ¹⁹Ne (d,²⁰Na) in inverse kinematics
 - ✓ Reaction calculations
 - ✓ Detailed simulations

> SOME ION TEST BENCH SUBSYSTEMS

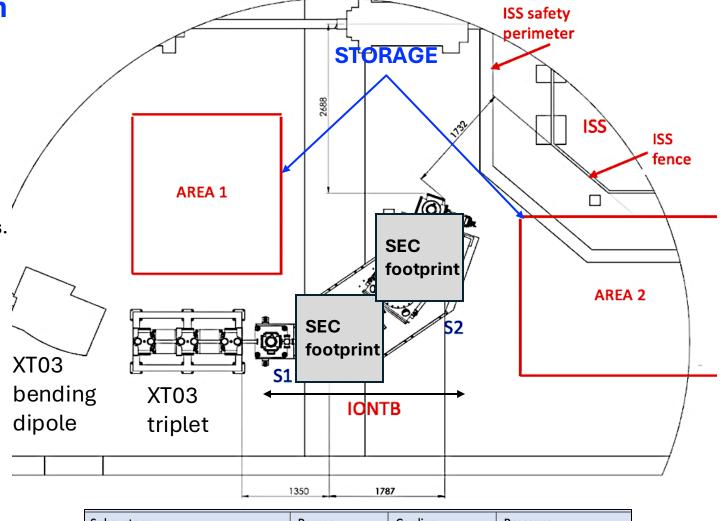
Faraday 🔊

WARM QUADS CERN pool

MAGDEM CCT SC DIPOLE + QUAD

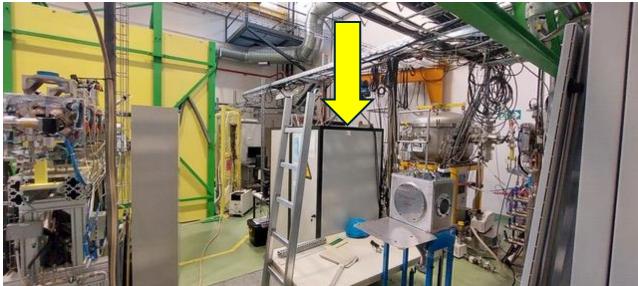
➤ IONTB footprint, interaction with experiments, storage

- IONTB and SEC exchange/storage.
 - ✓ Storage areas A1, A2 possible.
 - ✓ IONTB is provided with 4 aircasters.
 - ✓ SEC and IONTB can be moved using pallet jacks.


ALREADY

ORDERED

Detail drawings of footprint can be provided.


SEC reaction chamber

	Subsystem	Power	Cooling	Pressure
	1. Differential pumping	2 kW	no	beam line < 10-6 mb
	2: Reaction chamber	< 1 kW	no	beam line < 10-6 mb
	3: Quadrupole magnet	5.2 kW	4 l/m	beam line < 10-6 mb
•	4: MAGDEM CCT magnet	10 kW	9 l/m	beam line < 10-6 mb
	5: Quadrupole magnet	5.2 kW	4 l/m	beam line < 10-6 mb
	6: Focal plane detector	2 kW	no	beam line < 10-6 mb
	7. Rotary platform.	no	no	no

Day-1 test reaction

¹⁹Ne + d
$$\rightarrow$$
 ²⁰Na + n (1p transfer)

	18Mg 115 kev 2p=100%	19Mg 3500 fs 2p=100%	20Mg 90.4 ms ε+β+=100% εp=29.9%	21Mg 120 ms ε+β+=100% εp=20.9% εq=0 115%	22Mg 3.87 s ε+β+=100%
	17Na p=100%	18Na 0.2 mev p=100%	19Na 40 kev p=100%	20Na 448 ms ε+β+=100% εα=19.9%	21Na 22.45 s ε+β+=100%
15Ne 0.59 mev 2p=100%	16Ne 80 kev 2p=100%	17Ne 109.1 ms ε+β+=100% εp=94.4% εα=3.51%	18Ne 1.66 s ε+β+=100%	19Ne 17.26 s ε+β+=100%	20Ne STABLE 90.48%
14F 910 kev p=100%	15F 0.38 mev p=100%	16F 23.1 kev p=100%	17F 64.368 s ε+β+=100%	18F 109.734 min ε+β+=100%	19F STABLE 100%

Hot **Topic**

Proton rich nucleus at the drip lines

- ✓ Little experimental info about 20 Na ground state → SFs
- ✓ Quenching factor around the drip lines
- ✓ Role of 19 Ne(p, γ) 20 Na in Explosive Stellar Phenomena
- Good production of $^{19}\text{Ne} > 10^6 \text{ pps}$ at ISOLDE \rightarrow ^{19}Ne EU paradise!!
- Cannot be done at ISS, SEC, Decay Station

Coulomb excitation of the proton-dripline nucleus ²⁰Na

M. A. Schumaker¹, D. Cline², G. Hackman³, C. J. Pearson³, C. E. Svensson¹, C. Y. Wu⁴, A. Andreyev³, R. A. E. Austin⁵, G. C. Ball³ et al.

Show more v

Phys. Rev. C 80, 044325 - Published 22 October, **2009** Erratum Phys. Rev. C **82**, 069902 (2010)

DOI: https://doi.org/10.1103/PhysRevC.80.044325

TRIUMF-ISAC **2010 PRC**

Experimental Investigation of the $^{19}\text{Ne}(p, \gamma)^{20}$ Na **Reaction Rate and Implications for Breakout** from the Hot CNO Cycle

J. Belarge¹, S. A. Kuvin¹, L. T. Baby¹, J. Baker¹, I. Wiedenhöver¹, P. Höflich¹, A. Volya¹, J. C. Blackmon², C. M. Deibel² et al.

Show more >

Phys. Rev. Lett. 117, 182701 - Published 27 October, 2016

DOI: https://doi.org/10.1103/PhysRevLett.117.182701

FSU-2016 PRL

Direct Measurement of the Key $E_{c.m.} = 456 \text{ keV}$ Resonance in the Astrophysical $^{19}\text{Ne}(p,\gamma)^{20}\text{Na}$ **Reaction and Its Relevance for Explosive Binary Systems**

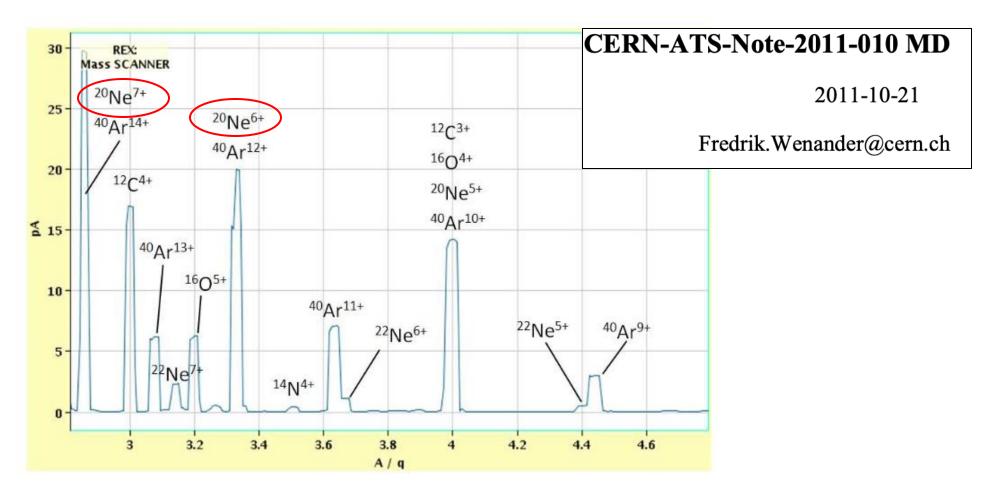
R. Wilkinson¹, G. Lotay^{1,2}, A. Lennarz³, C. Ruiz³, G. Christian^{4,5,6}, C. Akers^{3,*}, W. N. Catford¹ A. A. Chen⁷, D. Connolly³ et al.

Show more v

DRAGON-2017 PRL

DOI: https://doi.org/10.1103/PhysRevLett.119.242701

Phys. Rev. Lett. 119, 242701 - Published 11 December.


> ISOLDE yields

ISOLDE Yield Database

Version: 0.2.1.0 (30.11.2021 1

²⁰ Ne	stable	PSB	1.10e+6	U Carbide
¹⁹ Ne	17.22 s 2	PSB	7.50e+6	CaO powder
¹⁹ Ne	17.22 s 2	PSB	2.30e+4	CeOx fibers
¹⁹ Ne	17.22 s 2	PSB	9.00e+3	SrO powder
¹⁹ Ne	17.22 s 2	PSB	1.40e+4	ZrO2 fibers
¹⁹ Ne	17.22 s 2	PSB	3.50e+6	Mg Oxide
¹⁹ Ne	17.22 s 2	PSB	1.20e+4	U Carbide
¹⁹ Ne	17.22 s 2	PSB	9.60e+6	CaO nanostructure powder
¹⁹ Ne	17.22 s 2	PSB	2.10e+5	TiOx fibers
¹⁹ Ne	17.22 s 2	PSB	1.50e+4	La2O3 powde
¹⁸ Ne	1672 ms 8	PSB	6.90e+5	CaO powder
¹⁸ Ne	1672 ms 8	PSB	2.00e+5	Mg Oxide
¹⁸ Ne	1672 ms 8	PSB	4.20e+4	NaFLiF salt
¹⁸ Ne	1672 ms 8	PSB	7.00e+3	TiOx fibers
¹⁸ Ne	1672 ms 8	PSB	2.30e+3	ZrO2 fibers
¹⁸ Ne	1672 ms 8	PSB	3.70e+2	U Carbide
¹⁷ Ne	109.2 ms 6	PSB	1.00e+3	Mg Oxide
¹⁷ Ne	109.2 ms 6	PSB	4.00e+1	TiOx fibers
sotope	Half life	Driver	Yield / μC	Target

► ISOLDE Neon charge states

Figure 9. Extracted residual mass-spectrum from REXEBIS for optimal vacuum conditions. The Ne peaks are due to buffer-gas effusing from REXTRAP into the breeder. At the time of recording an electron beam current of 150 mA was used with a breeding time of 28 ms.

DRAGON @ TRIUMF

Direct Measurement of the Key $E_{\rm c.m.}=456~{ m keV}$ Resonance in the Astrophysical $^{19}{ m Ne}(p,\gamma)^{20}{ m Na}$ Reaction and Its Relevance for Explosive Binary Systems

R. Wilkinson¹, G. Lotay^{1,2}, A. Lennarz³, C. Ruiz³, G. Christian^{4,5,6}, C. Akers^{3,*}, W. N. Catford¹, A. A. Chen⁷, D. Connolly³ et al.

Show more 💙

Phys. Rev. Lett. **119**, 242701 – **Published 11 December, 2017**

DOI: https://doi.org/10.1103/PhysRevLett.119.242701

(...) . In total, the average 19 Ne beam intensity was found to be $\sim 7 \times 10^6$ pps. However, it should be noted that 19 F was also present as an isobaric beam contaminant at a level of $\sim 2 \times 10^7$ pps. Nevertheless, reactions involving 19 F were easily separable from those involving 19 Ne in the ionization chamber.

Figure 1 shows the γ -gated MCP vs separator TOF results obtained for the incident beam energy $E_{\text{beam}} = 486 \text{ A keV}$.

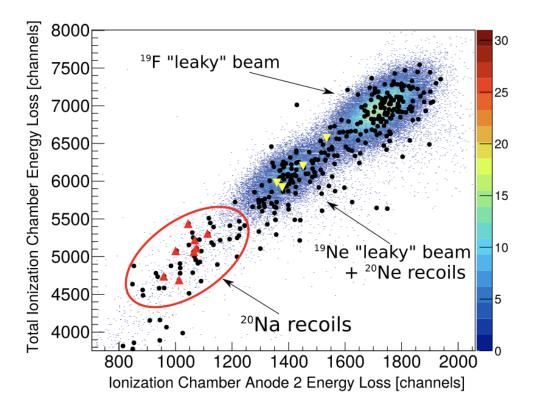
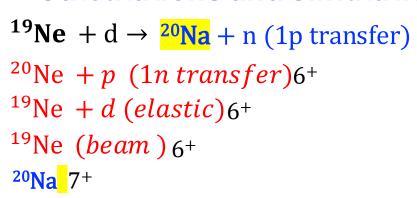
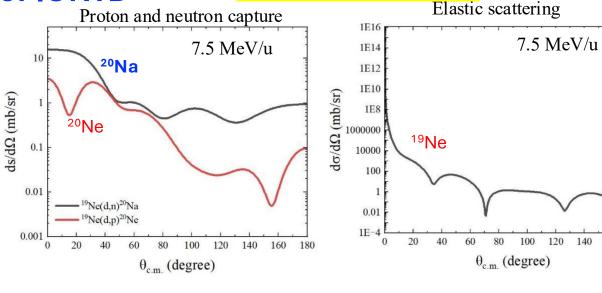
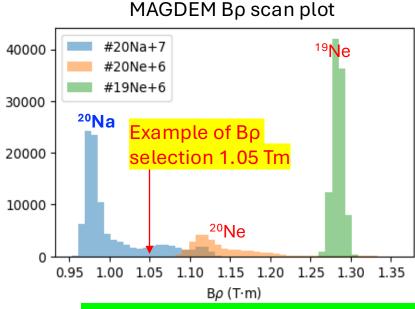
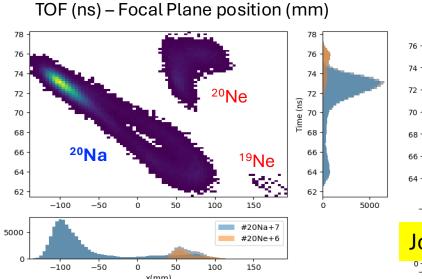



FIG. 2. Total energy loss in the ionization chamber vs energy loss in the second anode. Black dots indicate all singles events observed from all production runs. Attenuated beam runs are also included as shaded underlays, and two clear loci of F and Ne recoils are visible. Red triangles represent golden recoil- γ ¹⁹Ne + p resonance events, while the location of easily distinguishable contaminant ¹⁹F + p resonance events are highlighted by yellow triangles.


> Calculations and simulations for IONTB


Fatemeh Torabi, Huelva




FRESCO

Ian J. Thompson, Comput. Phys. Rep. 7 (1988) 167.

Final resolution will even increase!! → "DE-E" detector (DSSSD+PAD) → full simulation in progress → "ISOLDE Superconducting Linear Separator (ISLS)" EMIS2025

THANKS!!

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Letter of Intent to the ISOLDE and Neutron Time-of-Flight Committee

Installation and commissioning of the ISRS Ion Test-bench and Multi-Harmonic Buncher at HIE-ISOLDE

9 January 2025

J.L. Aguado¹, L. Acosta², M.J.G. Borge², R. Berjillos¹, J.A. Briz³, I. Bustinduy⁴, J. Cederkall⁵, Y. Fontenla⁶, L.M. Fraile³, C. García-Ramos¹, J.E. García-Ramos¹, J. Giner-Navarro⁶, D. Gómez-Domínguez¹, J. Gómez-Galán¹, C.A. González-Cordero¹, C. Guazzoni⁷, A. Heinz⁸, A. Illana³, B. Jonson⁸, G. Kirby¹, T. Kurtukian-Nieto², I. Martel¹, Daniel José Marín-Lambarrí⁹, J. Mas-Balbuena¹⁰, J.L. Muñoz⁴, E. Nacher¹¹, B. Olaizola², J. Resta-López⁶, J. Sánchez-Segovia¹, A.M. Sánchez-Benítez¹, S. Sánchez-Navas², M. Sánchez-Raya¹, F. Taft⁶, O. Tengblad², F. Torabi¹.

- 1. Departamento de Ciencias Integradas, Universidad de Huelva, Spain.
- 2. Instituto de Estructura de la Materia, CSIC, Madrid, Spain.
- 3. Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Spain.
- 4. ESS-BILBAO, Bilbao, Spain.
- 5. Department of Physics, Lund University, Sweden.
- 6. ICMUV, Instituto de Ciencia de Materiales, Universidad de Valencia, Spain.
- 7. Politecnico di Milano, DEIB and INFN, Sezione di Milano, Milano, Italy.
- 8. Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
- 9. Instituto de Física, UNAM, Mexico.
- 10. Instituto de Ciencias Nucleares, UNAM, Mexico.
- 11. Instituto de Física Corpuscular, CSIC, Valencia, Spain.

Spokesperson(s):

I. Martel (<u>imartel@uhu.es</u>), T. Kurtukian-Nieto (<u>Teresa.Kurtukian@csic.es</u>), I. Bustinduy (<u>ibon.bustinduy@essbilbao.org</u>), J. Resta (<u>Javier2.Resta@uv.es</u>)

Local contact: Jose Alberto Rodríguez (alberto.rodriguez@cern.ch)