Las expresiones faciales emocionales como fuente de información en la toma de decisiones clínicas: una revisión sistemática

  • Fernando Gordillo León Universidad de Salamanca
  • Lilia Mestas Hernández Facultad de Estudios Superiores Zaragoza (FESZ). Universidad Nacional Autónoma de México.
  • Germán Gálvez García Universidad de Salamanca

Palabras clave:

Comunicación no verbal, Dolor, Emociones, Inteligencia artificial en salud, Simulación clínica

Resumen

El objetivo de esta revisión fue analizar la influencia de las expresiones faciales emocionales en la toma de decisiones clínicas, atendiendo tanto a los métodos empleados como a los principales resultados de la última década. Para ello, se aplicaron las directrices del protocolo PRISMA y se efectuó una búsqueda en las bases de datos Scopus, Web of Science (WoS), PsycINFO y MEDLINE, que permitió identificar 16 estudios relevantes. Los resultados muestran que el análisis de las expresiones faciales en el contexto clínico facilita una evaluación más precisa del estado emocional del paciente, repercuten en la calidad de las decisiones clínicas y potencian la empatía profesional. Además, se observa un creciente desarrollo de herramientas de apoyo basadas en inteligencia artificial, con aplicaciones prometedoras en telemedicina, geriatría, cuidados paliativos y atención neonatal. Futuras investigaciones deberán validar la eficacia de estas tecnologías en contextos clínicos reales y establecer marcos éticos sólidos que orienten su adecuada integración en la práctica sanitaria.

 

Descargas

La descarga de datos todavía no está disponible.

Altmetrics

Citas

Amin, S. U., Hossain, M. S., Muhammad, G., Alhussein, M., & Rahman, M. A. (2019). Cognitive smart healthcare for pathology detection and monitoring. IEEE Access, 7, 10745–10753. https://doi.org/10.1109/ACCESS.2019.2891390

Cannavò, M., Zomparelli, W., Carta, M. G., Romano, F., & La Torre, G. (2021). Effectiveness of a training on the recognition of subtle facial emotions in health and social workers. Rivista di Psichiatria, 56(6), 334-339. https://doi.org/10.1708/3713.37048

Casti, P., Mencattini, A., Comes, M. C., Callari, G., Di Giuseppe, D., Natoli, S., Dauri, M., Daprati, E., & Martinelli, E. (2019). Calibration of vision-based measurement of pain intensity with multiple expert observers. IEEE Transactions on Instrumentation and Measurement, 68(7), 2442–2450. https://doi.org/10.1109/TIM.2019.2909603

Çelik, M. E. (2023). A novel deep learning model for pain intensity evaluation. International Journal of Computational and Experimental Science and Engineering, 9(4), 325–330. https://doi.org/10.22399/ijcesen.1372628

Ellis, M., & Astell, A. (2017). Communicating with people living with dementia who are nonverbal: The creation of Adaptive Interaction. PLOS ONE, 12(8), e0180395. https://doi.org/10.1371/journal.pone.0180395

Elvas, L. B., Nunes, M., Ferreira, J. C., y Helgheim, B. I. (2024). Hospital remote care assistance AI to reduce workload. International Journal of Computer Information Systems and Industrial Management Applications, 16(2), 13.

Elwyn, G., Frosch, D., Thomson, R., Joseph-Williams, N., Lloyd, A., Kinnersley, P., Cording, E., Tomson, D., Dodd, C., Rollnick, S., Edwards, A., & Barry, M. (2012). Shared decision making: a model for clinical practice. Journal of General Internal Medicine, 27(10), 1361–1367. https://doi.org/10.1007/s11606-012-2077-6

Ferreira, L. A., Carlini, L. P., Coutrin, G. A. S., Heiderich, T. M., Balda, R. C. X., Barros, M. C. M., Guinsburg, R., & Thomaz, C. E. (2025). Disclosing neonatal pain in real-time: AI-derived pain sign from continuous assessment of facial expressions. Computers in Biology and Medicine, 189, 109908. https://doi.org/10.1016/j.compbiomed.2025.109908

Ghosh, A., Umer, S., Dhara, B. C., & Ali, G. G. M. N. (2025). A multimodal pain sentiment analysis system using ensembled deep learning approaches for IoT-enabled healthcare framework. Sensors, 25(4), 1223. https://doi.org/10.3390/s25041223

Gordillo, F., Mestas, L., Arana, J. M., & Pérez, M. Á. (2021). La expresión facial de las emociones y su papel regulador en el ámbito clínico. En Manual de medicina interna (pp. 693-708). Universidad de Cauca.

Hadjar, H., Vu, B., & Hemmje, M. (2025). TheraSense: Deep learning for facial emotion analysis in mental health teleconsultation. Electronics, 14(3), 422. https://doi.org/10.3390/electronics14030422

Hall, J. A., Harrigan, J. A., & Rosenthal, R. (1995). Nonverbal behavior in clinician–patient interaction. Applied and Preventive Psychology, 4(1), 21–37. https://doi.org/10.1016/S0962-1849(05)80049-6

Holland, A.C., O'Connell, G., & Dziobek, I. (2021). Facial mimicry, empathy, and emotion recognition: a meta-analysis of correlations. Cognition and Emotion, 35(1), 150-168. https://doi.org/10.1080/02699931.2020.1815655.

International Association for the Study of Pain. (2020). IASP announces revised definition of pain. https://www.iasp-pain.org/publications/iasp-news/iasp-announces-revised-definition-of-pain/

Koizumi, T., Nara, K., Hashimoto, T., Takamizawa, S., Sugimoto, K., Suzuki, N., & Morimoto, Y. (2018). Influence of Negative Emotional Expressions on the Outcomes of Shared Decision Making During Oncofertility Consultations in Japan. Journal of adolescent and young adult oncology, 7(4), 504–508. https://doi.org/10.1089/jayao.2017.0108

Lakhan, A., Mohammed, M. A., Abdulkareem, K. H., Hamouda, H., & Alyahya, S. (2023). Autism Spectrum Disorder detection framework for children based on federated learning integrated CNN-LSTM. Computers in Biology and Medicine, 166, 107539. https://doi.org/10.1016/j.compbiomed.2023.107539

Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gøtzsche, PC., Ioannidis, J.P., Clarke, M., Devereaux, P.J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Medicine, 6(7), e1000100. https://doi.org/10.1371/journal.pmed.1000100

Loizou, M., Arnab, S., Lameras, P., Hartley, T., Loizides, F., Kumar, P., & Sumilo, D. (2024). Designing, implementing and testing an intervention of affective intelligent agents in nursing virtual reality teaching simulations—a qualitative study. Frontiers in Digital Health, 6, 1307817. https://doi.org/10.3389/fdgth.2024.1307817

Menychtas, A., Galliakis, M., Tsanakas, P., & Maglogiannis, I. (2019). Real-time integration of emotion analysis into homecare platforms. 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 2019, pp. 3468-3471. https://doi.org/10.1109/EMBC.2019.8857484

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097

Östlund, L., Bravell, M. E., & Johansson, L. (2022). Working in a gray area—Healthcare staff experiences of receiving consent when caring for persons with dementia. Dementia, 22(1), 144-160. https://doi.org/10.1177/14713012221137472

Ouzzani, M., Hammady, H., Fedorowicz, Z., y Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. Systematic Reviews, 5, 210. https://doi.org/10.1186/s13643-016-0384-4

Pu, L., Coppieters, M. W., Smalbrugge, M., Jones, C., Byrnes, J., Todorovic, M., & Moyle, W. (2024). Associations between facial expressions and observational pain in residents with dementia and chronic pain. Journal of Advanced Nursing, 80(9), 3846–3855. https://doi.org/10.1111/jan.16063

Schuler, K., Jung, I. C., Zerlik, M., Hahn, W., Sedlmayr, M., & Sedlmayr, B. (2025). Context factors in clinical decision-making: a scoping review. BMC Medical Informatics and Decision Making, 25, 133. https://doi.org/10.1186/s12911-025-02965-1

Sharkiya, S. H. (2023). Quality communication can improve patient-centred health outcomes among older patients: a rapid review. BMC Health Services Research, 23, 886. https://doi.org/10.1186/s12913-023-09869-8

Vasiliu, L., Cortis, K., McDermott, R., Kerr, A., Peters, A., Hesse, M., Hagemeyer, J., Belpaeme, T., McDonald, J., Villing, R., Mileo, A., Caputo, A., Scriney, M., Griffiths, S., Koumpis, A., & Davis, B. (2021). CASIE – Computing affect and social intelligence for healthcare in an ethical and trustworthy manner. Paladyn, Journal of Behavioral Robotics, 12(1), 437–453. https://doi.org/10.1515/pjbr-2021-0026

Wahila, R., Odimba, E., y Ngoma, C. (2018). Developing a pain assessment tool for patients after major abdominal surgery. British Journal of Nursing, 27(9), 503–508. https://doi.org/10.12968/bjon.2018.27.9.503

Wanko, E. L., Kerr, J., & Jarvis, M. A. (2020). Evidence of nonverbal communication between nurses and older adults: a scoping review. BMC Nursing, 19, 53. https://doi.org/10.1186/s12912-020-00443-9

Watts, J., Ekberg, S., Bluebond-Langner, M., Langner, R., Fleming, S., Danby, S., Ekberg, K., Yates, P., Bradford, N., Delaney, A., & Herbert, A. (2024). Questions directed to children with diverse communicative competencies in paediatric healthcare consultations. Patient Education and Counseling, 121, 108103. https://doi.org/10.1016/j.pec.2023.108103

Publicado
2025-10-27
Cómo citar
Gordillo León, F., Mestas Hernández, L., & Gálvez García, G. (2025). Las expresiones faciales emocionales como fuente de información en la toma de decisiones clínicas: una revisión sistemática. Análisis y Modificación de Conducta, 51(188), 62-85. https://doi.org/10.33776/EUHU/amc.v51i188.9189
Sección
Artículos