Uncovering the predictive power of neural networks in the adoption of beacon technology in the tourism sector
Adoption of beacon technology in the tourism sector
Keywords:
Abstract
This study examines the main factors influencing the adoption of location-based mobile services (LBS) powered by beacon technology in the tourism sector. Using logistic regression models and neural networks, specifically the multilayer perceptron (MLP), this research identifies eleven significant variables driving the adoption process. Among these, system quality, trust, perceived ease of use, perceived usefulness, and service quality stand out as the most influential factors. The MLP model demonstrated superior performance with a classification accuracy of 99.14% and an area under the curve (AUC) of 0.947, highlighting the exceptional predictive capability of non-parametric models over traditional logistic regression. These findings underscore the importance of system trust and reliability in driving users' adoption of beacon-based applications. Additionally, this study provides valuable insights for marketing professionals and tourism stakeholders, suggesting that enhancing user trust, improving system quality, and simplifying the user experience can positively impact LBS figures in the tourism sector. The results provide a solid foundation for leveraging advanced predictive models to improve the operational efficiency of digital solutions in tourism.
Downloads
Altmetrics
References
Agapito, D., & Guerreiro, M. (2023). Designing accessible tourism experiences: slow, sensory and smart framework. Enlightening Tourism. A Pathmaking Journal, 13(1), 167-198.
Agarwal, R. & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information Systems Research, 9(2), 204-215. https://doi.org/10.1287/isre.9.2.204
Agarwal, R., Ahuja, M., Carter, P. E. & Gans, M. (1998, Septiembre). Early and late adopters of IT innovations: extensions to innovation diffusion theory. En Proceedings of the DIGIT Conference, pp. 18-32.
Aggarwal, R., Mittal, S. & Dhingra, S. (2024). Location-based advertising: a systematic review, integrative framework, and future research Agenda. Journal of Location Based Services, 18(3), 237-271. https://doi.org/10.1080/17489725.2024.2341632
Ahn, T., Ryu, S. & Han, I. (2007). The impact of Web quality and playfulness on user acceptance of online retailing. Information & Management, 44(3), 263-275. https://doi.org/10.1016/j.im.2006.12.008
Aldás‐Manzano, J., Ruiz‐Mafé, C. & Sanz‐Blas, S. (2009). Exploring individual personality factors as drivers of M‐shopping acceptance. Industrial Management & Data Systems, 109(6), 739-757. https://doi.org/10.1108/02635570910968018
Alkhunaizan, A. & Love, S. (2012). What drives mobile commerce? An empirical evaluation of the revised UTAUT model. International Journal of Management and Marketing Academy, 2(1), 82-99. https://doi.org/10.1016/j.im.2004.07.001
Barfi, K. A., Imoro, O., Arkorful, V. & Armah, J. K. (2024). Acceptance of e-library and support services for distance education students: Modelling their initial perspectives. Information Development, 40(3), 517-529. https://doi.org/10.1177/02666669221150426
Bishop, C. M. (1995). Neural Networks for Pattern Recognition. New York: Oxford University Press.
Blanco, A., Pino-Mejías, R., Lara, J. & Rayo, S. (2013). Credit scoring models for the microfinance industry using neural networks: Evidence from Peru. Expert Systems with Applications, 40(1), 356-364. https://doi.org/10.1016/j.eswa.2012.07.051
Blanco-Oliver, A., Lara Rubio, J., Irimia-Diéguez, A., & Liébana Cabanillas, F. J. (2024). Examining user behavior with machine learning for effective mobile peer to peer payment adoption. Financial Innovation, 10(1), 94.
Brislin, R. W. (1970). Back-translation for cross-cultural research. Journal of Cross-cultural Psychology, 1(3), 185-216. https://doi.org/10.1177/135910457000100301
Brown, I. & Jayakody, R. (2008). B2C e commerce success: a test and validation of a revised conceptual model. Electronic Journal of Information Systems Evaluation, 11(3), 167-184. https://academic-publishing.org/index.php/ejise/article/view/372/335
Budi, N. F. A., Adnan, H. R., Firmansyah, F., Hidayanto, A. N., Kurnia, S. & Purwandari, B. (2021). Why do people want to use location-based application for emergency situations? The extension of UTAUT perspectives. Technology in Society, 65, 101480. https://doi.org/10.1016/j.techsoc.2020.101480
Cerruela García, G., Luque Ruiz, I. & Gómez-Nieto, M. A. (2017). State of the art trends and future of Bluetooth Low Energy, near field communication, and visible light communication in the development of smart cities. Sensors, 16(11), 1-38. https://doi.org/10.3390/s17112598
Chang, H. H. & Chen, S. W. (2008). The impact of online store environment cues on purchase intention: Trust and perceived risk as a mediator. Online Information Review, 32(6), 818-841. https://doi.org/10.1108/14684520810923953
Choi, H. S. & Kim, S. H. (2017). A content service deployment plan for metaverse museum exhibitions—Centering on the combination of beacons and HMDs. International Journal of Information Management, 37(1), 1519-1527. https://doi.org/10.1016/j.ijinfomgt.2016.04.017
Choi, Y. J. & Park, J. W. (2017). The decision-making processes of duty-free shop users using a goal directed behavior model: The moderating effect of gender. Journal of Hospitality and Tourism Management, 31, 152-162. https://doi.org/10.1016/j.jhtm.2016.11.001
Chong, A. Y. L. (2013). Predicting m-commerce adoption determinants: A neural network approach. Expert Systems with Applications, 40(2), 523-530. https://doi.org/10.1016/j.eswa.2012.07.068
Churchill, G. A. & Iacobucci, D. (2002). Marketing Research: Methodological Foundations. Florida: Harcourt College Publishers.
Comisión Europea (2020). Special Eurobarometer 503: Europeans’ attitudes towards the impact of digitisation and automation on daily life. Recuperado el 16 de octubre de 2024, de https://data.europa.eu/data/datasets/s2228_92_4_503_eng?locale=en
Csikszentmihalyi, M. (2000). Beyond Boredom and Anxiety. Jossey-Bass Publissers.
Cubiles-de-la-Vega, M. D., Blanco-Oliver, A., Pino-Mejías, R. & Lara-Rubio, J. (2013). Improving the management of microfinance institutions by using credit scoring models based on Statistical Learning techniques. Expert Systems with Applications, 40(17), 6910-6917. https://doi.org/10.1016/j.eswa.2013.06.031
Currás‐Pérez, R., Ruiz‐Mafé, C. & Sanz‐Blas, S. (2013). Social network loyalty: evaluating the role of attitude, perceived risk and satisfaction. Online Information Review, 37(1), 61-82. https://doi.org/10.1108/14684521311311630
Dai, H., Luo, X. R., Liao, Q. & Cao, M. (2015). Explaining consumer satisfaction of services: The role of innovativeness and emotion in an electronic mediated environment. Decision Support Systems, 70, 97-106. https://doi.org/10.1016/j.dss.2014.12.003
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
Davis, F. D., Bagozzi, R. P. & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982
Featherman, M. S. & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451-474. https://doi.org/10.1016/S1071-5819(03)00111-3
Fishbein, M. & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: En An Introduction to Theory and Research. Addison-Wesley.
Flavián, C., Guinalíu, M. & Gurrea, R. (2006). The role played by perceived usability, satisfaction and consumer trust on website loyalty. Information & Management, 43(1), 1-14. https://doi.org/10.1016/j.im.2005.01.002
Gnana Sheela, K. & Deepa, S. N. (2013). Review on methods to fix number of hidden neurons in neural networks. Mathematical Problems in Engineering, 2013(1), 425740. https://doi.org/10.1155/2013/425740
Goldsmith, R. E. & Horowitz, D. (2006). Measuring motivations for online opinion seeking. Journal of Interactive Advertising, 6(2), 2-14. https://doi.org/10.1080/15252019.2006.10722114
Grant, A. (1996). Media dependency and multiple sources. En A. Crigler (Ed.), The Psychology of Political Communication (pp. 199-210). University of Michigan Press.
Grau-Berlanga, L., Higueras-Castillo, E., Shaikh, A. A., & Liébana-Cabanillas, F. (2023). Drivers of sustainable consumption: gender moderating effect. International Journal of Innovation and Sustainable Development, 17(4), 385-409.
Guillén, A., Herrera, L. J., Pomares, H., Rojas, I. & Liébana‐Cabanillas, F. (2016). Decision support system to determine intention to use mobile payment systems on social networks: A methodological analysis. International Journal of Intelligent Systems, 31(2), 153-172. https://doi.org/10.1002/int.21749
Hastie, T., Tibshirani, R. y Friedman, J. H. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer Series in Statistics.
Herrero-Crespo, A. & Rodríguez del Bosque, I. (2008). The effect of innovativeness on the adoption of B2C e-commerce: A model based on the Theory of Planned Behaviour. Computers in Human Behavior, 24(6), 2830-2847. https://doi.org/10.1016/j.chb.2008.04.008
Herrero-Crespo, Á., Rodríguez del Bosque, I. & García de los Salmones Sánchez, M. M. (2009). The influence of perceived risk on Internet shopping behavior: a multidimensional perspective. Journal of Risk Research, 12(2), 259-277. https://doi.org/10.1080/13669870802497744
Hsieh, J. K., Hsieh, Y. C., Chiu, H. C. & Yang, Y. R. (2014). Customer response to web site atmospherics: Task-relevant cues, situational involvement and PAD. Journal of Interactive Marketing, 28(3), 225-236. https://doi.org/10.1016/j.intmar.2014.03.00
Hu, X., Wu, G., Wu, Y. & Zhang, H. (2010). The effects of Web assurance seals on consumers' initial trust in an online vendor: A functional perspective. Decision Support Systems, 48(2), 407-418. https://doi.org/10.1016/j.dss.2009.10.004
Huang, L. C., Shiau, W. L. & Lin, Y. H. (2017). What factors satisfy e-book store customers? Development of a model to evaluate e-book user behavior and satisfaction. Internet Research, 27(3), 563-585. https://doi.org/10.1108/IntR-05-2016-0142
Kang, J. H., Jang, J. C. & Jeong, C. (2018). Understanding museum visitor satisfaction and revisit intentions through mobile guide system: moderating role of age in museum mobile guide adoption. Asia Pacific Journal of Tourism Research, 23(2), 95-108. https://doi.org/10.1080/10941665.2017.1410190
Kim, C., Galliers, R. D., Shin, N., Ryoo, J. H. & Kim, J. (2012). Factors influencing Internet shopping value and customer repurchase intention. Electronic Commerce Research and Applications, 11(4), 374-387. https://doi.org/10.1016/j.elerap.2012.04.002
Kim, D. J., Ferrin, D. L. & Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), 544-564. https://doi.org/10.1016/j.dss.2007.07.001
Kim, M. J., Chung, N., Lee, C. K. & Preis, M. W. (2015). Motivations and use context in mobile tourism shopping: Applying contingency and task–technology fit theories. International Journal of Tourism Research, 17(1), 13-24. https://doi.org/10.1002/jtr.1957
Lee, D., Moon, J., Kim, Y. J. & Mun, Y. Y. (2015). Antecedents and consequences of mobile phone usability: Linking simplicity and interactivity to satisfaction, trust, and brand loyalty. Information & Management, 52(3), 295-304. https://doi.org/10.1016/j.im.2014.12.001
Lee, H. M. & Chen, T. (2014). Perceived quality as a key antecedent in continuance intention on mobile commerce. International Journal of Electronic Commerce Studies, 5(2), 123-142. https://doi.org/10.7903/ijecs.1150
Lee, T. (2005). The impact of perceptions of interactivity on customer trust and transaction intentions in mobile commerce. Journal of Electronic Commerce Research, 6(3), 165-180. http://www.jecr.org/sites/default/files/06_3_p01.pdf
Li, F., Zhu, D., Lin, M. T. & Kim, P. B. (2024). The Technology Acceptance Model and Hospitality and Tourism Consumers’ Intention to Use Mobile Technologies: Meta-Analysis and Structural Equation Modeling. Cornell Hospitality Quarterly, 65(4), 461-477. https://doi.org/10.1177/19389655241226558
Li, X. (2014). Perceived channel efficiency and motivation and orientation of information seeking as predictors of media dependency. Telematics and Informatics, 31(4), 628-639. https://doi.org/10.1016/j.tele.2013.11.009
Liang, S., Schuckert, M., Law, R. & Masiero, L. (2017). The relevance of mobile tourism and information technology: An analysis of recent trends and future research directions. Journal of Travel & Tourism Marketing, 34(6), 732-748. https://doi.org/10.1080/10548408.2016.1236768
Liébana-Cabanillas, F. & Lara-Rubio, J. (2017). Predictive and explanatory modeling regarding adoption of mobile payment systems. Technological Forecasting and Social Change, 120, 32-40. https://doi.org/10.1016/j.techfore.2017.04.017
Liébana-Cabanillas, F., Alcántara-Pilar, J. M., Singh, N., & Pavluković, V. (2024). Overview of the adoption of online food ordering services in Spain and India. An analytical approach based on the stimulus-organism-response model. International Journal of Human–Computer Interaction, 40(14), 3748-3762.
Liébana-Cabanillas, F., Sánchez-Fernández, J. & Muñoz-Leiva, F. (2014). Antecedents of the adoption of the new mobile payment systems: The moderating effect of age. Computers in Human Behavior, 35, 464-478. https://doi.org/10.1016/j.chb.2014.03.022
Lin, H. H. & Wang, Y. S. (2006). An examination of the determinants of customer loyalty in mobile commerce contexts. Information & Management, 43(3), 271-282. https://doi.org/10.1016/j.im.2005.08.001
Lin, K. M. (2011). e-Learning continuance intention: Moderating effects of user e-learning experience. Computers & Education, 56(2), 515-526. https://doi.org/10.1016/j.compedu.2010.09.017
Lin, T. C. & Huang, C. C. (2008). Understanding knowledge management system usage antecedents: An integration of social cognitive theory and task technology fit. Information & Management, 45(6), 410-417. https://doi.org/10.1016/j.im.2008.06.004
Lin, W., Xu, M., He, J. & Zhang, W. (2023). Privacy, security and resilience in mobile healthcare applications. Enterprise Information Systems, 17(3), 1939896. https://doi.org/10.1080/17517575.2023.1939896
Loureiro, S. M. C. (2015). The role of website quality on PAD, attitude and intentions to visit and recommend island destination. International Journal of Tourism Research, 17(6), 545-554. https://doi.org/10.1002/jtr.2022
Lucas, G. A., Lunardi, G. L. & Dolci, D. B. (2023). From e-commerce to m-commerce: An analysis of the user’s experience with different access platforms. Electronic Commerce Research and Applications, 58, 101240. https://doi.org/10.1016/j.elerap.2023.101240
MarketsandMarkets (2023). Location-Based Services (LBS) and Real-Time Location Systems (RTLS) Market by Offering (Platform, Services, Hardware) Location Type, Technology, Application (Tracking & Navigation, Marketing & Advertising), Vertical and Region - Global Forecast to 2028. Recuperado el 28 de octubre, de https://www.marketsandmarkets.com/Market-Reports/location-based-service-market-96994431.html
Mathwick, C., Malhotra, N. & Rigdon, E. (2001). Experiential value: conceptualization, measurement and application in the catalog and Internet shopping environment☆. Journal of Retailing, 77(1), 39-56. https://doi.org/10.1016/S0022-4359(00)00045-2
Mazaheri, E., Richard, M. O. & Laroche, M. (2011). Online consumer behavior: Comparing Canadian and Chinese website visitors. Journal of Business Research, 64(9), 958-965. https://doi.org/10.1016/j.jbusres.2010.11.018
Mehrabian, A. & Russell, J. A. (1974). An Approach to Environmental Psychology. Cambridge, Massachusetts: The MIT Press.
Migliore, G., Wagner, R., Cechella, F. S. & Liébana-Cabanillas, F. (2022). Antecedents to the adoption of mobile payment in China and Italy: An integration of UTAUT2 and innovation resistance theory. Information Systems Frontiers, 24(6), 2099-2122. https://doi.org/10.1007/s10796-022-10224-w
Molinillo, S., Rejón‐Guardia, F., Anaya‐Sánchez, R., & Liébana‐Cabanillas, F. (2023). Impact of perceived value on intention to use voice assistants: The moderating effects of personal innovativeness and experience. Psychology & Marketing, 40(11), 2272-2290.
Morescalchi, A. (2021). A new career in a new town. Job search methods and regional mobility of unemployed workers. Portuguese Economic Journal, 20(2), 223-272. https://doi.org/10.1007/s10258-020-00175-3
Murphy, H. C., Chen, M. M. y Cossutta, M. (2016). An investigation of multiple devices and information sources used in the hotel booking process. Tourism Management, 52, 44-51. https://doi.org/10.1016/j.tourman.2015.06.004
Navío-Marco, J., Ruiz-Gómez, L. M. & Sevilla-Sevilla, C. (2018). Progress in information technology and tourism management: 30 years on and 20 years after the Internet—Revisiting Buhalis & Law’s landmark study about eTourism. Tourism Management, 69, 460-470. https://doi.org/10.1016/j.tourman.2018.06.002
Okazaki, S., Castañeda, J. A., Sanz, S. & Mukherji, P. (2017). Physicians’ motivations to use mobile health monitoring: a cross-country comparison. Behaviour & Information Technology, 36(1), 21-32. https://doi.org/10.1080/0144929X.2016.1171395
Olson, D. L., Delen, D. & Meng, Y. (2012). Comparative analysis of data mining methods for bankruptcy prediction. Decision Support Systems, 52(2), 464-473. https://doi.org/10.1016/j.dss.2011.10.007
Ozkan, E., Yasin, B., Gursen, A. E. & Akpinar, H. M. (2024). The effect of flow experience on reuse intention of mobile navigation apps: The mediating role of location-based mobile service quality. Tourism & Management Studies, 20(1), 1-19. https://doi.org/10.18089/tms.20240101
Parasuraman, A., Zeithaml, V. A. & Berry, L. L. (1988). Servqual: A multiple-item scale for measuring consumer perc. Journal of Retailing, 64(1), 12. https://www.proquest.com/scholarly-journals/servqual-multiple-item-scale-measuring-consumer/docview/228609374/se-2
Parayil Iqbal, U., Jose, S. M. & Tahir, M. (2023). Integrating trust with extended UTAUT model: a study on Islamic banking customers’m-banking adoption in the Maldives. Journal of Islamic Marketing, 14(7), 1836-1858. https://doi.org/10.1108/JIMA-01-2022-0030
Park, J. & Le, H. T. P. M. (2023). A shared‐transportation mobile app continuance model: The moderating effects of brand awareness. Journal of Consumer Behaviour, 22(2), 496-510. https://doi.org/10.1002/cb.2111
Park, S. & Tussyadiah, I. P. (2017). Multidimensional facets of perceived risk in mobile travel booking. Journal of Travel Research, 56(7), 854-867. https://doi.org/10.1177/0047287516675062
Parra-López, E., Bulchand-Gidumal, J., Gutiérrez-Taño, D. & Díaz-Armas, R. (2011). Intentions to use social media in organizing and taking vacation trips. Computers in Human Behavior, 27(2), 640-654. https://doi.org/10.1016/j.chb.2010.05.022
Pavlou, P. A. (2002). A theory of planned behavior perspective to the consumer adoption of electronic commerce. MIS Quarterly, 30(1), 115-143.
Raleting, T. & Nel, J. (2011). Determinants of low-income non-users' attitude towards WIG mobile phone banking: Evidence from South Africa. African Journal of Business Management, 5(1), 212-223. https://doi.org/10.5897/AJBM10.1018
Ramos de Luna, I., Montoro-Ríos, F., Molinillo, S. & Liébana-Cabanillas, F. (2023). Consumer behaviour and mobile payments in the point of sale: Exploring the determinants of intention to adopt it. International Journal of Human–Computer Interaction, 40(18), 1-23. https://doi.org/10.1080/10447318.2023.2233135
Ravi Kumar, P. & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques–A review. European Journal of Operational Research, 180(1), 1-28. https://doi.org/10.1016/j.ejor.2006.08.043
Rodrigues, B. D. and Stevenson, M. J. (2013), “Takeover prediction using forecast combinations”, International Journal of Forecasting, Vol. 29 No. 4, pp. 628-641.
Rodríguez del Bosque, I., Crespo- Herrero, A. & García de los Salmones, M. M. (2005). La propensión a innovar en la adopción del comercio electrónico B2C: Un análisis sobre la base de la teoría de acción razonada. En XVII Encuentro de Profesores Universitarios de Marketing, pp. 723-728. Madrid.
Ruiz Mafé, C. & Sanz Blas, S. (2006). Explaining Internet dependency: An exploratory study of future purchase intention of Spanish Internet users. Internet Research, 16(4), 380-397. https://doi.org/10.1108/10662240610690016
Rumelhart, D. E., Hinton, D. E. & Williams, R. J. (1986). Learning Internal Representations by Error Propagation Inparallel Distributed Processing. Cambridge, MA: MIT Press.
Seow, A. N., Choong, Y. O., Moorthy, K. & Chan, L. M. (2017). Intention to visit Malaysia for medical tourism using the antecedents of Theory of Planned Behaviour: A predictive model. International Journal of Tourism Research, 19(3), 383-393. https://doi.org/10.1002/jtr.2120
Shih, Y. Y. & Chen, C. Y. (2013). The study of behavioral intention for mobile commerce: via integrated model of TAM and TTF. Quality & Quantity, 47(2), 1009-1020. https://doi.org/10.1007/s11135-011-9579-x
Singh, A. K., & Liébana-Cabanillas, F. (2024). An SEM-neural network approach for predicting antecedents of online grocery shopping acceptance. International Journal of Human–Computer Interaction, 40(7), 1723-1745.
Solano-Sánchez, M. Á., Aja-Valle, J., Arteaga-Sánchez, R., & López-Guzmán, T. (2024). Unveiling astrotourists’profiles. Activities, motivations, economic and social benefits and experiences. Enlightening Tourism. A Pathmaking Journal, 14(2), 1-16.
Stern, B. B., Royne, M. B., Stafford, T. F. & Bienstock, C. C. (2008). Consumer acceptance of online auctions: An extension and revision of the TAM. Psychology & Marketing, 25(7), 619-636. https://doi.org/10.1002/mar.20228
Stone, R. N. & Grønhaug, K. (1993). Perceived risk: Further considerations for the marketing discipline. European Journal of Marketing, 27(3), 39-50. https://doi.org/10.1108/03090569310026637
Tan, G. W. H., Ooi, K. B., Chong, S. C. & Hew, T. S. (2014). NFC mobile credit card: the next frontier of mobile payment?. Telematics and Informatics, 31(2), 292-307. https://doi.org/10.1016/j.tele.2013.06.002
Tan, G. W. H., Ooi, K. B., Sim, J. J. & Phusavat, K. (2012). Determinants of mobile learning adoption: An empirical analysis. Journal of Computer Information Systems, 52(3), 82-91. https://doi.org/10.1080/08874417.2012.11645561
Taylor, S. & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144-176. https://doi.org/10.1287/isre.6.2.144
Tomić, N., Kalinić, Z. & Todorović, V. (2023). Using the UTAUT model to analyze user intention to accept electronic payment systems in Serbia. Portuguese Economic Journal, 22(2), 251-270. https://doi.org/10.1007/s10258-022-00210-5
Trevino, L. K. & Webster, J. (1992). Flow in computer-mediated communication: Electronic mail and voice mail evaluation and impacts. Communication Research, 19(5), 539-573. https://doi.org/10.1177/009365092019005001
Triandis, H. C. (1977). Interpersonal Behavior. California: Brooks/Cole Publishing Company.
Venkatesh, V. & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273-315. https://doi.org/10.1111/j.1540-5915.2008.00192.x
Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365. https://doi.org/10.1287/isre.11.4.342.11872
Venkatesh, V., Hoehle, H. & Aljafari, R. (2014). A usability evaluation of the Obamacare website. Government Information Quarterly, 31(4), 669-680. https://doi.org/10.1016/j.giq.2014.07.003
Venkatesh, V., Thong, J. Y. L. & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412
Wang, C., Lee, M. K. O. & Hua, Z. (2015). A theory of social media dependence: Evidence from microblog users. Decision Support Systems, 69, 40-49. https://doi.org/10.1016/j.dss.2014.11.002
Wang, K. (2015). Determinants of mobile value-added service continuance: The mediating role of service experience. Information & Management, 52(3), 261-274. https://doi.org/10.1016/j.im.2014.11.005
Wang, Y. & Fesenmaier, D. R. (2004). Towards understanding members’ general participation in and active contribution to an online travel community. Tourism Management, 25(6), 709-722. https://doi.org/10.1016/j.tourman.2003.09.011
Wells, W. D. (1997). Measuring Advertising Effectiveness. New York: Psychology Press. https://doi.org/10.4324/9781315806099
West, D. (2000). Neural network credit scoring models. Computers & Operations Research, 27(11-12), 1131-1152. https://doi.org/10.1016/S0305-0548(99)00149-5
Wu, G. & Wu, G. (2006). Conceptualizing and measuring the perceived interactivity of websites. Journal of Current Issues & Research in Advertising, 28(1), 87-104. https://doi.org/10.1080/10641734.2006.10505193
Xiang, Z. & Fesenmaier D. R. (2017). Big Data Analytics, Tourism Design and Smart Tourism. En Z. Xiang y D. R. Fesenmaier (Eds.), Analytics in Smart Tourism Design. Tourism on the Verge (pp. 299-307). Springer.
Yoon, S., Kim, J. & Connolly, D. J. (2018). Understanding motivations and acceptance of location-based services. International Journal of Hospitality & Tourism Administration, 19(2), 187-209. https://doi.org/10.1080/15256480.2017.1305316
Yoon, S., Kim, J. & Connolly, D. J. (2018). Understanding motivations and acceptance of location-based services. International Journal of Hospitality & Tourism Administration, 19(2), 187-209. https://doi.org/10.1080/15256480.2017.1305316
Zarmpou, T., Saprikis, V., Markos, A. & Vlachopoulou, M. (2012). Modeling users’ acceptance of mobile services. Electronic Commerce Research, 12, 225-248. https://doi.org/10.1007/s10660-012-9092-x
Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: a means-end model and synthesis of evidence. Journal of Marketing, 52(3), 2-22. https://doi.org/10.1177/002224298805200302
Zhang, G., Patuwo, B. E. & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14(1), 35-62. https://doi.org/10.1016/S0169-2070(97)00044-7
Zhang, L., Zhu, J. & Liu, Q. (2012). A meta-analysis of mobile commerce adoption and the moderating effect of culture. Computers in Human Behavior, 28(5), 1902-1911. https://doi.org/10.1016/j.chb.2012.05.008
Zhou, T., Lu, Y. & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760-767. https://doi.org/10.1016/j.chb.2010.01.013
Copyright (c) 2025 ENLIGHTENING TOURISM. A PATHMAKING JOURNAL

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



