CEAFMC
EL CENTRO
EQUIPO DIRECTIVO
OBJETIVOS
DOCUMENTACIÓN
MIEMBROS
INVESTIGACIÓN
PUBLICACIONES
NOTICIAS
NOTICIAS
EVENTOS
HISTORICO
ESQPT2021
QPT2022
QPT2024
mass2025
VISITANTES
LABORATORIO LIFE
INFORMACIÓN GENERAL
ENLACES DE INTERES
RESEARCH LINES
DETECTORS, DAQ, ETC...
ELOG
HPC@UHU
mass2025
Monodromy of a class of analytic generalized nilpotent systems through their Newton diagram
Algaba A.
García C.
Reyes M.
Journal of Computational and Applied Mathematics
Doi 10.1016/j.cam.2015.03.018
Volumen 287 páginas 78 - 87
2015-10-15
Citas: 3
Abstract
© 2015 Elsevier B.V.Newton diagram of a planar vector field allows to determine whether a singular point of an analytic system is a monodromic singular point. We solve the monodromy problem for the nilpotent systems and we apply our method to a wide family of systems with a degenerate singular point, so-called generalized nilpotent cubic systems.
Characteristic orbits, Monodromy, Newton diagrams, Nilpotent systems, Quasi-homogeneous vector fields
Datos de publicaciones obtenidos de
Scopus