Orbital normal forms for a class of three-dimensional systems with an application to Hopf-zero bifurcation analysis of Fitzhugh–Nagumo system

Applied Mathematics and Computation
Doi 10.1016/j.amc.2019.124893
Volumen 369
2020-03-15
Citas: 0
Abstract
© 2019 Elsevier Inc.We consider a class of three-dimensional systems having an equilibrium point at the origin, whose principal part is of the form (? [Formula presented] (x,y), [Formula presented] (x,y),f(x,y))T. This principal part, which has zero divergence and does not depend on the third variable z, is the coupling of a planar Hamiltonian vector field Xh(x,y):=(? [Formula presented] (x,y), [Formula presented] (x,y))T with a one-dimensional system. We analyze the quasi-homogeneous orbital normal forms for this kind of systems, by introducing a new splitting for quasi-homogeneous three-dimensional vector fields. The obtained results are applied to the nondegenerate Hopf-zero singularity that falls into this kind of systems. Beyond the Hopf-zero normal form, a parametric normal form is obtained, and the analytic expressions for the normal form coefficients are provided. Finally, the results are applied to a case of the three-dimensional Fitzhugh–Nagumo system.
Fitzhuh-Nagumo system, Hopf-zero bifurcation, Normal form, Splitting tridimensional vector fields
Datos de publicaciones obtenidos de Scopus